Large uncertainty in future warming due to aerosol forcing – Nature Climate Change

Date:


  • Hope, C. The $10 trillion value of better information about the transient climate response. Philos. Trans. R. Soc. A 373, 20140429 (2015).

    Article 

    Google Scholar
     

  • IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58, e2019RG000660 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2021).

  • Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 10, 101 (2019).

  • Mülmenstädt, J. et al. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Change 11, 508–513 (2021).

    Article 

    Google Scholar
     

  • Gettelman, A., Lin, L., Medeiros, B. & Olson, J. Climate feedback variance and the interaction of aerosol forcing and feedbacks. J. Clim. 29, 6659–6675 (2016).

    Article 

    Google Scholar
     

  • Kiehl, J. T. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34, L2271 (2007).

    Article 

    Google Scholar
     

  • Kramer, R. J. et al. Observational evidence of increasing global radiative forcing. Geophys. Res. Lett. https://doi.org/10.1029/2020gl091585 (2021).

  • McCoy, I. L. et al. The hemispheric contrast in cloud microphysical properties constrains aerosol forcing. Proc. Natl Acad. Sci. USA 117, 18998–19006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Watson‐Parris, D. et al. Constraining uncertainty in aerosol direct forcing. Geophys. Res. Lett. 47, e2020GL087141 (2020).

    Article 

    Google Scholar
     

  • Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Stevens, B. Uncertain then, irrelevant now. Nature 503, 47–48 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jenkins, S. et al. Quantifying non-CO2 contributions to remaining carbon budgets. npj Clim. Atmos. Sci. 4, 47 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peace, A. H. et al. Effect of aerosol radiative forcing uncertainty on projected exceedance year of a 1.5 °C global temperature rise. Environ. Res. Lett. 15, 0940a6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar
     

  • Smith, C. J. et al. Energy budget constraints on the time history of aerosol forcing and climate sensitivity. J. Geophys. Res. Atmos. 126, e2020JD03362 (2021).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

    Article 

    Google Scholar
     

  • Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794–4819 (2015).

    Article 

    Google Scholar
     

  • Allen, M. R. et al. Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. npj Clim. Atmos. Sci. 5, 5 (2022).

    Article 

    Google Scholar
     

  • Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smith, C. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IntergovernmentalPanel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 7 Supplementary Material, https://www.ipcc.ch/ (2021).

  • Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the SST pattern effect. Nat. Clim. Change 11, 132–136 (2021).

    Article 

    Google Scholar
     

  • Smith, C. J., & Watson-Parris, D. chrisroadmap/ar6-aerosol-uncertainty: aerosol and ECS uncertainty on future warming (v1.0) https://doi.org/10.5281/zenodo.7103015 (2022).

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related