2021 North American heatwave amplified by climate change-driven nonlinear interactions – Nature Climate Change

Date:


  • Popovich, N. & Choi-Schagrin, W. Hidden toll of the Northwest warmth wave: lots of of additional deaths. The New York Instances (11 August 2021).

  • Extra Deaths Related to COVID-19 (CDC, 2021); https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm

  • Warmth-Associated Deaths in B.C. Data Replace (BC Coroners Service, accessed August 2021); https://www2.gov.bc.ca/belongings/gov/delivery-adoption-demise-marriage-and-divorce/deaths/coroners-service/statistical/heat_related_deaths_in_bc_knowledge_update.pdf

  • Schramm, P. J. et al. Warmth-associated emergency division visits throughout the Northwestern warmth wave—United States, June 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1020–1021 (2021).


    Google Scholar
     

  • American Housing Survey (AHS) (US Census Bureau, accessed August 2021); https://www.census.gov/applications-surveys/ahs.html

  • Tigchelaar, M., Battisti, D. S. & Spector, J. T. Work diversifications inadequate to handle rising warmth threat for U.S. agricultural employees. Environ. Res. Lett. 15, 094035 (2020).

  • Map Archive (U.S. Drought Monitor, accessed August 2021); https://droughtmonitor.unl.edu/Maps/MapArchive.aspx

  • Nationwide Fireplace Information (NICF, accessed August 2021); https://www.nifc.gov/fireplace-data/nfn

  • Silverman, H., Man, M. & Sutton, J. Western wildfire smoke is contributing to New York Metropolis’s worst air high quality in 15 years. CNN (21 July 2021); https://version.cnn.com/2021/07/21/climate/us-western-wildfires-wednesday/index.html

  • Meehl, G. A. & Tebaldi, C. Extra intense, extra frequent, and longer lasting warmth waves within the twenty first century. Science 305, 994–997 (2004).

    CAS 

    Google Scholar
     

  • Perkins-Kirkpatrick, S. E. & Lewis, S. C. Rising tendencies in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    CAS 

    Google Scholar
     

  • Philip, S. Y. et al. Speedy Attribution Evaluation of the Extraordinary Heatwave on the Pacific Coast (World Climate Attribution, 2021); https://www.worldweatherattribution.org/wp-content material/uploads/NW-US-excessive-heat-2021-scientific-report-WWA.pdf

  • Coumou, D. & Robinson, A. Historic and future improve within the international land space affected by month-to-month warmth extremes. Environ. Res. Lett. 8, 034018 (2013).


    Google Scholar
     

  • Energy, S. B. & Delage, F. P. D. Setting and smashing excessive temperature information over the approaching century. Nat. Clim. Change 9, 529–534 (2019).


    Google Scholar
     

  • Fischer, E. M., Sippel, S. & Knutti, R. Rising chance of file-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).


    Google Scholar
     

  • Thompson, V. et al. The 2021 western North America warmth wave among the many most excessive occasions ever recorded globally. Sci. Adv. 8, eabm6860 (2022).


    Google Scholar
     

  • Taleb, N. N. The Black Swan: The Impression of the Extremely Unbelievable (Random Home, 2007).

  • Aven, T. On the which means of a black swan in a threat context. Saf. Sci. 57, 44–51 (2013).


    Google Scholar
     

  • Lin, N. & Emanuel, Okay. Gray swan tropical cyclones. Nat. Clim. Change 6, 106–111 (2015).


    Google Scholar
     

  • Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and up to date Northern Hemisphere climate extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).

    CAS 

    Google Scholar
     

  • Petoukhov, V. et al. Position of quasiresonant planetary wave dynamics in current boreal spring-to-autumn excessive occasions. Proc. Natl Acad. Sci. USA 113, 6862–6867 (2016).

    CAS 

    Google Scholar
     

  • Display screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour explicit regional climate extremes. Nat. Clim. Change 4, 704–709 (2014).


    Google Scholar
     

  • Kornhuber, Okay. et al. Summertime planetary wave resonance within the Northern and Southern Hemispheres. J. Clim. 30, 6133–6150 (2017).


    Google Scholar
     

  • Kornhuber, Okay. et al. Amplified Rossby waves improve threat of concurrent heatwaves in main breadbasket areas. Nat. Clim. Change 10, 48–53 (2019).


    Google Scholar
     

  • Mann, M. E. et al. Affect of anthropogenic climate change on planetary wave resonance and excessive climate occasions. Sci. Rep. 7, 45242 (2017).

    CAS 

    Google Scholar
     

  • Mann, M. E. et al. Projected modifications in persistent excessive summer season climate occasions: the function of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).

    CAS 

    Google Scholar
     

  • Kornhuber, Okay. & Tamarin-Brodsky, T. Future modifications in northern hemisphere summer season climate persistence linked to projected arctic warming. Geophys. Res. Lett. 48, e2020GL091603 (2021).


    Google Scholar
     

  • Hirschi, M. et al. Observational proof for soil-moisture influence on sizzling extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2010).


    Google Scholar
     

  • Miralles, D. G., van den Berg, M. J., Teuling, A. J. & de Jeu, R. A. M. Soil moisture–temperature coupling: a multiscale observational evaluation. Geophys. Res. Lett. 39, L21707 (2012).

  • Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vilà-Guerau de Arellano, J. Mega-heatwave temperatures on account of mixed soil desiccation and atmospheric warmth accumulation. Nat. Geosci. 7, 345–349 (2014).

    CAS 

    Google Scholar
     

  • Rasmijn, L. M. et al. Future equal of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nat. Clim. Change 8, 381–385 (2018).


    Google Scholar
     

  • Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R. & Cooper, H. M. Land–ambiance interactions exacerbated the drought and heatwave over northern Europe throughout summer season 2018. AGU Adv. 2, e2020AV000283 (2021).


    Google Scholar
     

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a altering climate: a evaluation. Earth Sci. Rev. 99, 125–161 (2010).

    CAS 

    Google Scholar
     

  • Koster, R. D. et al. Areas of robust coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    CAS 

    Google Scholar
     

  • Cook dinner, B. I., Smerdon, J. E., Seager, R. & Coats, S. International warming and twenty first century drying. Clim. Dynam. 43, 2607–2627 (2014).


    Google Scholar
     

  • Cook dinner, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented twenty first century drought threat within the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).


    Google Scholar
     

  • Dirmeyer, P. A. et al. Projections of the shifting envelope of water cycle variability. Clim. Change 136, 587–600 (2016).


    Google Scholar
     

  • Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–ambiance coupling and climate change in Europe. Nature 443, 205–209 (2006).

    CAS 

    Google Scholar
     

  • Petoukhov, V. et al. Alberta wildfire 2016: apt contribution from anomalous planetary wave dynamics. Sci. Rep. 8, 12375 (2018).


    Google Scholar
     

  • Teng, H. & Branstator, G. Amplification of waveguide teleconnections within the boreal summer season. Curr. Clim. Change Rep. 5, 421–432 (2019).


    Google Scholar
     

  • Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest warmth wave and related blocking: meteorology and the function of an upstream cyclone as a diabatic supply of wave exercise. Geophys. Res. Lett. 49, e2021GL097699 (2022).

  • Wang, J. et al. Altering lengths of the 4 seasons by international warming. Geophys. Res. Lett. 48, e2020GL091753 (2021).


    Google Scholar
     

  • Berg, A. et al. Impression of soil moisture–ambiance interactions on floor temperature distribution. J. Clim. 27, 7976–7993 (2014).


    Google Scholar
     

  • Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing excessive occasions to climate change: a brand new frontier in a warming world. One Earth 2, 522–527 (2020).


    Google Scholar
     

  • van Oldenborgh, G. J. et al. Pathways and pitfalls in excessive occasion attribution. Clim. Change 166, 13 (2021).


    Google Scholar
     

  • Philip, S. et al. A protocol for probabilistic excessive occasion attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).


    Google Scholar
     

  • McKinnon, Okay. A., Rhines, A., Tingley, M. P. & Huybers, P. The altering form of Northern Hemisphere summer season temperature distributions. J. Geophys. Res. 121, 8849–8868 (2016).


    Google Scholar
     

  • Volodin, E. M. & Yurova, A. Y. Summer time temperature normal deviation, skewness and robust optimistic temperature anomalies within the current day climate and beneath international warming circumstances. Clim. Dynam. 40, 1387–1398 (2013).


    Google Scholar
     

  • Philip, S. Y. et al. Speedy attribution evaluation of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Preprint at Earth Syst. Dynam. https://doi.org/10.5194/esd-2021-90 (2021).

  • White, R. H., Kornhuber, Okay., Martius, O. & Wirth, V. From atmospheric waves to heatwaves: a waveguide perspective for understanding and predicting concurrent, persistent and excessive extratropical climate. Bull. Am. Meteorol. Soc. 103, E923–E935 (2021).


    Google Scholar
     

  • Xu, P. et al. Amplified waveguide teleconnections alongside the polar entrance jet favor summer season temperature extremes over northern Eurasia. Geophys. Res. Lett. 48, e2021GL093735 (2021).

  • Liu, Y., Solar, C. & Li, J. The boreal summer season zonal wavenumber-3 development sample and its reference to floor enhanced warming. J. Clim. 35, 833–850 (2022).


    Google Scholar
     

  • Solar, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection throughout boreal summer season. Nat. Commun. 13, 1288 (2022).

    CAS 

    Google Scholar
     

  • Dirmeyer, P. A. The terrestrial section of soil moisture–climate coupling. Geophys. Res. Lett. 38, L16702 (2011).


    Google Scholar
     

  • Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. Quantifying spatiotemporal variations of soil moisture management on floor power steadiness and close to-floor air temperature. J. Clim. 30, 7105–7124 (2017).


    Google Scholar
     

  • Mueller, B. & Seneviratne, S. I. Sizzling days induced by precipitation deficits on the international scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).

    CAS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 international reanalysis. Q. J. Roy. Meteor. Soc. 146, 1999–2049 (2020).


    Google Scholar
     

  • Lee, D. E., Ting, M., Vigaud, N., Kushnir, Y. & Barnston, A. G. Atlantic multidecadal variability as a modulator of precipitation variability within the Southwest United States. J. Clim. 31, 5525–5542 (2018).


    Google Scholar
     

  • Pomposi, C., Giannini, A., Kushnir, Y. & Lee, D. E. Understanding Pacific Ocean affect on interannual precipitation variability within the Sahel. Geophys. Res. Lett. 43, 9234–9242 (2016).


    Google Scholar
     

  • Neale, R. B. et al. The imply climate of the Neighborhood Environment Mannequin (CAM4) in pressured SST and totally coupled experiments. J. Clim. 26, 5150–5168 (2013).


    Google Scholar
     

  • Titchner, H. A. & Rayner, N. A. The Met Workplace Hadley Centre sea ice and sea floor temperature information set, model 2: 1. Sea ice concentrations. J. Geophys. Res. 119, 2864–2889 (2014).


    Google Scholar
     

  • Hauser, M., Orth, R. & Seneviratne, S. I. Investigating soil moisture–climate interactions with prescribed soil moisture experiments: an evaluation with the Neighborhood Earth System Mannequin (model 1.2). Geosci. Mod. Dev. 10, 1665–1677 (2017).


    Google Scholar
     

  • Humphrey, V. et al. Soil moisture–ambiance suggestions dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    CAS 

    Google Scholar
     

  • Hauser, M. mathause/cmip_temperatures: model 0.2.1. Zenodo https://doi.org/10.5281/zenodo.5532894 (2021).

  • Coles, S. An Introduction to Statistical Modeling of Excessive Values (Springer, 2001).

  • Paciorek, C. climextRemes: instruments for analyzing climate extremes. Zenodo https://doi.org/10.5281/zenodo.3240582 (2019).

  • Bell, B. et al. The ERA5 international reanalysis: preliminary extension to 1950. Q. J. Roy. Meteor. Soc. 147, 4186–4227 (2021).


    Google Scholar
     

  • Information. GISS: GISS floor temperature evaluation (GISTEMP v4) (NASA, accessed January 2022); https://information.giss.nasa.gov/gistemp/

  • Bartusek, S. sambartusek/PNW_heatwave_2021: PNW_heatwave_2021. Zenodo https://doi.org/10.5281/ZENODO.7153416 (2022).

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Share post:

    Subscribe

    spot_imgspot_img

    Popular

    More like this
    Related