Connect with us

Climate

Sharpening of cold-season storms over the western United States

Published

on


  • Smith, A. B. U.S. Billion-dollar Climate and Local weather Disasters, 1980–current (NCEI, 2021); https://doi.org/10.25921/stkw-7w73

  • Chen, X., Hossain, F. & Leung, L. R. Possible most precipitation within the U.S. Pacific Northwest in a Altering Local weather. Water Resour. Res. 53, 9600–9622 (2017).

    Article 

    Google Scholar
     

  • Handbook on Estimation of Possible Most Precipitation (PMP) (WMO, 2009); https://library.wmo.int/index.php?lvl=notice_display&id=1302#.Y57lHnbP3IU

  • Pahl-Wostl, C. et al. In direction of a sustainable water future: shaping the subsequent decade of worldwide water analysis. Curr. Opin. Environ. Maintain. 5, 708–714 (2013).

    Article 

    Google Scholar
     

  • Westra, S. et al. Future adjustments to the depth and frequency of short-duration excessive rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article 

    Google Scholar
     

  • Prein, A. F. et al. The longer term intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2016).


    Google Scholar
     

  • Trenberth, Ok. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The altering character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).

    Article 

    Google Scholar
     

  • Pendergrass, A. G. et al. Nonlinear response of utmost precipitation to warming in CESM1. Geophys. Res. Lett. 46, 10551–10560 (2019).

    Article 

    Google Scholar
     

  • Berg, N. & Corridor, A. Elevated interannual precipitation extremes over california below local weather change. J. Clim. 28, 6324–6334 (2015).

    Article 

    Google Scholar
     

  • Swain, D. L., Langenbrunner, B., Neelin, J. D. & Corridor, A. Growing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    Article 

    Google Scholar
     

  • Lamjiri, M. A., Ralph, F. M. & Dettinger, M. D. Current adjustments in United States excessive 3-day precipitation utilizing the R-CAT Scale. J. Hydrometeorol. 21, 1207–1221 (2020).

    Article 

    Google Scholar
     

  • Wrzesien, M. L. & Pavelsky, T. M. Projected adjustments to excessive runoff and precipitation occasions from a downscaled simulation over the Western United States. Entrance. Earth Sci. 7, 355 (2020).

    Article 

    Google Scholar
     

  • Huang, X., Swain, D. L. & Corridor, A. D. Future precipitation enhance from very excessive decision ensemble downscaling of utmost atmospheric river storms in California. Sci. Adv. 6, eaba1323 (2020).

    Article 

    Google Scholar
     

  • Prein, A. F. et al. A evaluation on regional convection-permitting local weather modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).

    Article 

    Google Scholar
     

  • Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional sample of projected future adjustments in excessive precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article 

    Google Scholar
     

  • Chen, X. et al. Predictability of utmost precipitation in Western U.S. watersheds based mostly on atmospheric river incidence, depth, and length. Geophys. Res. Lett. 45, 11693–11701 (2018).

    Article 

    Google Scholar
     

  • Wright, D. B., Smith, J. A. & Baeck, M. L. Vital examination of space discount components. J. Hydrol. Eng. 19, 769–776 (2014).

    Article 

    Google Scholar
     

  • Liu, C. et al. Continental-scale convection-permitting modeling of the present and future local weather of North America. Clim. Dyn. 49, 71–95 (2017).

    Article 

    Google Scholar
     

  • Musselman, Ok. N. et al. Projected will increase and shifts in rain-on-snow flood threat over western North America. Nat. Clim. Change 8, 808–812 (2018).

    Article 

    Google Scholar
     

  • Musselman, Ok. N., Clark, M. P., Liu, C., Ikeda, Ok. & Rasmussen, R. Slower snowmelt in a hotter world. Nat. Clim. Change 7, 214–219 (2017).

    Article 

    Google Scholar
     

  • Scaff, L. et al. Simulating the convective precipitation diurnal cycle in North America’s present and future local weather. Clim. Dyn. 55, 369–382 (2020).

    Article 

    Google Scholar
     

  • Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. R. Atmospheric rivers, floods and the water sources of California. Water 3, 445–478 (2011).

    Article 

    Google Scholar
     

  • Hughes, M. et al. The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Half II: sensitivity of modeled precipitation to terrain peak and atmospheric river orientation. J. Hydrometeorol. 15, 1954–1974 (2014).

    Article 

    Google Scholar
     

  • Ryoo, J.-M. et al. Terrain trapped airflows and precipitation variability throughout an atmospheric river occasion. J. Hydrometeorol. 21, 355–375 (2020).

    Article 

    Google Scholar
     

  • Ralph, F. M., Neiman, P. J. & Rotunno, R. Dropsonde observations in low-level jets over the northeastern pacific ocean from CALJET-1998 and PACJET-2001: imply vertical-profile and atmospheric-river traits. Mon. Climate Rev. 133, 889–910 (2005).

    Article 

    Google Scholar
     

  • Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R. & Talbot, C. A. Atmospheric rivers drive flood damages within the western United States. Sci. Adv. 5, eaax4631 (2019).

    Article 

    Google Scholar
     

  • Leung, L. R. & Qian, Y. Atmospheric rivers induced heavy precipitation and flooding within the western U.S. simulated by the WRF regional local weather mannequin. Geophys. Res. Lett. 36, L03820 (2009).

    Article 

    Google Scholar
     

  • Loriaux, J. M., Lenderink, G. & Siebesma, A. P. Peak precipitation depth in relation to atmospheric situations and large-scale forcing at midlatitudes. J. Geophys. Res. Atmos. 121, 5471–5487 (2016).

    Article 

    Google Scholar
     

  • Kunkel, Ok. E. et al. Possible most precipitation and local weather change. Geophys. Res. Lett. 40, 1402–1408 (2013).

    Article 

    Google Scholar
     

  • Davies, L., Jakob, C., Might, P., Kumar, V. V. & Xie, S. Relationships between the large-scale ambiance and the small-scale convective state for Darwin, Australia. J. Geophys. Res. Atmos. 118, 11,534–11,545 (2013).

  • Matte, D., Christensen, J. H. & Ozturk, T. Spatial extent of precipitation occasions: when large is getting greater. Clim. Dyn. 58, 1861–1875 (2022).

    Article 

    Google Scholar
     

  • Hansen, E. M., Fenn, D. D., Corrigan, P. & Vogel, J. L. Hydrometerological Report No. 57 (US Division of Military Corps of Engineers, 1994); https://www.climate.gov/media/owp/hdsc_documents/PMP/HMR57.pdf

  • Corrigan, P., Fenn, D. D., Kluck, D. R. & Vogel, J. L. Hydrometerological Report No. 59 (US Division of Commerce, 1999); https://www.climate.gov/media/owp/hdsc_documents/PMP/HMR59.pdf

  • Hansen, E. M., Schwarz, F. Ok. & Riedel, J. T. Hydrometerological Report No. 49 (US Depertment of Commerce, 1984); https://www.climate.gov/media/owp/hdsc_documents/PMP/HMR49.pdf

  • Kotz, M., Levermann, A. & Wenz, L. The impact of rainfall adjustments on financial manufacturing. Nature 601, 223–227 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Dynamical and thermodynamical modulations on future adjustments of landfalling atmospheric rivers over western North America. Geophys. Res. Lett. 42, 7179–7186 (2015).

    Article 

    Google Scholar
     

  • Prein, A. F. et al. Elevated rainfall quantity from future convective storms within the US. Nat. Clim. Change 7, 880–884 (2017).

  • Wasko, C., Sharma, A. & Westra, S. Decreased spatial extent of utmost storms at larger temperatures. Geophys. Res. Lett. 43, 4026–4032 (2016).

    Article 

    Google Scholar
     

  • Fletcher, S., Lickley, M. & Strzepek, Ok. Studying about local weather change uncertainty permits versatile water infrastructure planning. Nat. Commun. 10, 1782 (2019).

    Article 

    Google Scholar
     

  • Lopez-Cantu, T., Prein, A. F. & Samaras, C. Uncertainties in future U.S. excessive precipitation from downscaled local weather projections. Geophys. Res. Lett. 47, e2019GL086797 (2020).

    Article 

    Google Scholar
     

  • Skamarock, W. C. et al. A Description of the Superior Analysis WRF Model 3 (NCAR, 2008); https://doi.org/10.5065/D68S4MVH

  • Gao, Y., Leung, R. L., Zhao, C. & Hagos, S. Sensitivity of U.S. summer season precipitation to mannequin decision and convective parameterizations throughout grey zone resolutions. J. Geophys. Res. Atmos. 122, 2714–2733 (2017).

    Article 

    Google Scholar
     

  • Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    Article 

    Google Scholar
     

  • Daly, C. et al. Physiographically delicate mapping of climatological temperature and precipitation throughout the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article 

    Google Scholar
     

  • Chen, X., Duan, Z., Leung, L. R. & Wigmosta, M. A framework to delineate precipitation-runoff regimes: precipitation versus snowpack within the Western United States. Geophys. Res. Lett. 46, 13044–13053 (2019).

    Article 

    Google Scholar
     

  • Rupp, D. E., Abatzoglou, J. T., Hegewisch, Ok. C. & Mote, P. W. Analysis of CMIP5 twentieth century local weather simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos. 118, 10,884–10,906 (2013).

    Article 

    Google Scholar
     

  • Chen, X. et al. Precipitation objects below the present and future local weather: WRF 6-km hydroclimate simulation of the western US. Zenodo https://doi.org/10.5281/zenodo.6378027 (2022).

  • Chen, X., Leung, L. R., Gao, Y., Liu, Y. & Wigmosta, M. S. Sharpening of chilly season storms over the western US: companion dataset. Zenodo https://doi.org/10.5281/zenodo.7392256 (2022).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved