Connect with us

Climate

Growing hypoxia on world coral reefs beneath ocean warming

Published

on


  • Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Increasing oxygen-minimum zones within the tropical oceans. Science 320, 655–658 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    Article 

    Google Scholar
     

  • Breitburg, D. et al. Declining oxygen within the world ocean and coastal waters. Science 359, eaam7240 (2018).

    Article 

    Google Scholar
     

  • Bopp, L. et al. A number of stressors of ocean ecosystems within the twenty first century: projections with CMIP5 fashions. Biogeosciences 10, 6225–6245 (2013).

    Article 

    Google Scholar
     

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and first manufacturing decline from CMIP6 mannequin projections. Biogeosciences 17, 3439–3470 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: a overview of its ecological results and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33, 245–303 (1995).


    Google Scholar
     

  • Altieri, A. H. et al. Tropical useless zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, H. R. & Altieri, A. H. Oxygen: the common forex on coral reefs. Coral Reefs 38, 177–198 (2019).

    Article 

    Google Scholar
     

  • Hughes, D. J. et al. Coral reef survival beneath accelerating ocean deoxygenation. Nat. Clim. Change 10, 296–307 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kealoha, A. Okay. et al. Localized hypoxia could have precipitated coral reef mortality on the Flower Backyard Banks. Coral Reefs 39, 119–132 (2020).

    Article 

    Google Scholar
     

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves beneath world warming. Nature 560, 360–364 (2018).

    Article 

    Google Scholar
     

  • Vaquer-Sunyer, R., Duarte, C. M., Jordà, G. & Ruiz-Halpern, S. Temperature dependence of oxygen dynamics and neighborhood metabolism in a shallow Mediterranean macroalgal meadow (Caulerpa prolifera). Estuaries Coast. 35, 1182–1192 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sutherland, W. J. et al. A 2021 horizon scan of rising world organic conservation points. Tendencies Ecol. Evol. 36, 87–97 (2021).

    Article 

    Google Scholar
     

  • Cyronak, T. et al. Diel temperature and pH variability scale with depth throughout numerous coral reef habitats. Limnol. Oceanogr. Lett. 5, 193–203 (2020).

    Article 

    Google Scholar
     

  • Grey, J. S., Wu, R. S. S. & Or, Y. Y. Results of hypoxia and natural enrichment on the coastal marine atmosphere. Mar. Ecol. Prog. Ser. 238, 249–279 (2002).

    Article 

    Google Scholar
     

  • Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Vaquer-Sunyer, R. & Duarte, C. M. Temperature results on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).

    Article 

    Google Scholar
     

  • Haas, A. F., Smith, J. E., Thompson, M. & Deheyn, D. D. Results of decreased dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2, e235 (2014).

    Article 

    Google Scholar
     

  • Johnson, M. D., Swaminathan, S. D., Nixon, E. N., Paul, V. J. & Altieri, A. H. Differential susceptibility of reef-building corals to deoxygenation reveals exceptional hypoxia tolerance. Sci. Rep. 11, 23168 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gravinese, P. M., Douwes, A., Eaton, Okay. R. & Muller, E. M. Ephemeral hypoxia reduces oxygen consumption within the Caribbean coral Orbicella faveolata. Coral Reefs 41, 13–18 (2021).

    Article 

    Google Scholar
     

  • Nilsson, G. E., Östlund-Nilsson, S. & Munday, P. L. Results of elevated temperature on coral reef fishes: lack of hypoxia tolerance and incapacity to acclimate. Comp. Biochem. Physiol. 156, 389–393 (2010).

    Article 

    Google Scholar
     

  • DeCarlo, T. M. et al. Mass coral mortality beneath native amplification of two °C ocean warming. Sci. Rep. 7, 44586 (2017).

  • Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The depth, period, and severity of low aragonite saturation state occasions on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).

    Article 

    Google Scholar
     

  • Guzmán, H. M., Cortés, J., Glynn, P. W. & Richmond, R. H. Coral mortality related to dinoflagellate blooms within the Japanese Pacific (Costa Rica and Panama). Mar. Ecol. Prog. Ser. 60, 299–303 (1990).

    Article 

    Google Scholar
     

  • Raj, Okay. D. et al. Low oxygen ranges brought on by Noctiluca scintillans bloom kills corals in Gulf of Mannar, India. Sci. Rep. 10, 22133 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, M. D. et al. Fast ecosystem-scale penalties of acute deoxygenation on a Caribbean coral reef. Nat. Commun. 12, 4522 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Andréfouët, S., Dutheil, C., Menkes, C. E., Bador, M. & Lengaigne, M. Mass mortality occasions in atoll lagoons: environmental management and elevated future vulnerability. Glob. Change Biol. 21, 195–205 (2015).

    Article 

    Google Scholar
     

  • Altieri, A. H. & Gedan, Okay. B. Local weather change and useless zones. Glob. Change Biol. 21, 1395–1406 (2015).

    Article 

    Google Scholar
     

  • Murphy, J. W. A. & Richmond, R. H. Modifications to coral well being and metabolic exercise beneath oxygen deprivation. PeerJ 4, e1956 (2016).

    Article 

    Google Scholar
     

  • Alderdice, R. et al. Divergent expression of hypoxia response techniques beneath deoxygenation in reef‐forming corals aligns with bleaching susceptibility. Glob. Change Biol. 27, 312–326 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Al-Horani, F. A., Tambutté, É. & Allemand, D. Darkish calcification and the day by day rhythm of calcification within the scleractinian coral, Galaxea fascicularis. Coral Reefs 26, 531–538 (2007).

    Article 

    Google Scholar
     

  • Wijgerde, T., Jurriaans, S., Hoofd, M., Verreth, J. A. J. & Osinga, R. Oxygen and heterotrophy have an effect on calcification of the scleractinian coral Galaxea fascicularis. PLoS ONE 7, e52702 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wijgerde, T., Silva, C. I. F., Scherders, V., van Bleijswijk, J. & Osinga, R. Coral calcification beneath day by day oxygen saturation and pH dynamics reveals the essential position of oxygen. Biol. Open 3, 489–493 (2014).

    Article 

    Google Scholar
     

  • Deleja, M. et al. Results of hypoxia on coral photobiology and oxidative stress. Biology 11, 1068 (2022).

  • Alderdice, R. et al. Hypoxia as a physiological cue and pathological stress for coral larvae. Mol. Ecol. 31, 571–587 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Alderdice, R. et al. Disparate inventories of hypoxia gene units throughout corals align with inferred environmental resilience. Entrance. Mar. Sci. 9, 834332 (2022).

  • Jorissen, H. & Nugues, M. M. Coral larvae keep away from substratum exploration and settlement in low-oxygen environments. Coral Reefs 9, 31–39 (2021).

    Article 

    Google Scholar
     

  • Villanueva, R. D., Yap, H. T. & Montaño, M. N. E. Survivorship of coral juveniles in a fish farm atmosphere. Mar. Pollut. Bull. 10, 580–589 (2005).

    Article 

    Google Scholar
     

  • Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).

    Article 

    Google Scholar
     

  • Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Local weather change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Alderdice, R. et al. Deoxygenation lowers the thermal threshold of coral bleaching. Sci. Rep. 12, 18273 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Steckbauer, A., Klein, S. G. & Duarte, C. M. Additive impacts of deoxygenation and acidification threaten marine biota. Glob. Change Biol. 26, 5602–5612 (2020).

    Article 

    Google Scholar
     

  • Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    Article 
    CAS 

    Google Scholar
     

  • D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new views and implications for coastal administration and reef survival. Curr. Opin. Environ. Maintain. 7, 82–93 (2014).

    Article 

    Google Scholar
     

  • Grégoire, M. et al. A world ocean oxygen database and atlas for assessing and predicting deoxygenation and ocean well being within the open and coastal ocean. Entrance. Mar. Sci. 8, 724913 (2021).

  • Yates, Okay. Okay., Moore, C. S. & Smiley, N. A. Time Sequence of Autonomous Carbonate System Parameter Measurements from Crocker Reef, Florida, USA (US Geological Survey, 2019); https://doi.org/10.5066/P90NCI8T

  • Kekuewa, S. A. H. et al. Temporal and spatial variabilities of chemical and bodily parameters on the Heron Island coral reef platform. Aquat. Geochem. 27, 241–268 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pedersen, Okay. A. Spatiotemporal Variability in Seawater Carbonate Chemistry at Two Contrasting Reef Areas in Bocas del Toro, Panama. MSc thesis, Univ. California (2019).

  • Web page, H. N. et al. Spatiotemporal variability in seawater carbon chemistry for a coral reef flat in Kāne’ohe Bay, Hawai’i. Limnol. Oceanogr. 64, 913–934 (2018).

    Article 

    Google Scholar
     

  • Pezner, A. Okay. et al. Lateral, vertical, and temporal variability of seawater carbonate chemistry at Hog Reef, Bermuda. Entrance. Mar. Sci. 8, 1–18 (2021).

    Article 

    Google Scholar
     

  • Ecosystem Sciences Division Nationwide Coral Reef Monitoring Program: Diel Seawater Carbonate Chemistry Observations from a Suite of Instrumentation Deployed at Coral Reef Websites at Tutuila Island, American Samoa from June 23 to July 17, 2018 NCEI Accession 0240606 (Pacific Islands Fisheries Science Middle, 2021).

  • Ecosystem Sciences Division Nationwide Coral Reef Monitoring Program: Diel Seawater Carbonate Chemistry Observations from a Suite of Instrumentation Deployed at Coral Reef Websites at Baker Island, Jarvis Island, and Palmyra Atoll within the Pacific Distant Islands Marine Nationwide Monument Between 2018-06-12 and 2018-08-07 NCEI Accession 0240686 (Pacific Islands Fisheries Science Middle, 2021).

  • Rintoul, M. S. et al. The consequences of sunshine depth and stream velocity on biogeochemical variability inside a fringing coral reef in Onna‐son, Okinawa, Japan. J. Geophys. Res. Oceans 127, e2021JC018369 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kelley, D. & Richards, C. gsw: Gibbs sea water features. R bundle model 1.0-5 https://CRAN.R-project.org/bundle=gsw (2017).

  • RStudio Crew RStudio: Built-in Improvement for R (RStudio, 2020).

  • Pezner, A. Okay. et al. Information for: Growing hypoxia on world coral reefs beneath ocean warming. Dryad https://doi.org/10.5061/dryad.41ns1rnj7 (2023).

  • Pezner, A. Okay. et al. World reef oxygen. GitHub https://github.com/apezner/GlobalReefOxygen (2023).

  • Kennedy, E. V. et al. Reef cowl, a coral reef classification for world habitat mapping from distant sensing. Sci. Information 8, 196 (2021).

    Article 

    Google Scholar
     

  • Dowle, M. & Srinivasan, A. knowledge.desk: extension of ‘data.frame’. R bundle model 1.13.6 https://CRAN.R-project.org/bundle=knowledge.desk (2020).

  • Rosenberg, R. in Fjord Oceanography: Results of Oxygen Deficiency on Benthic Macrofauna in Fjord oceanography, H. J. Freeland, D. M. Farmer, and C. D. Levings (eds), 499–514 (Plenum Press, 1980).

  • Hofmann, A. F., Peltzer, E. T., Walz, P. M. & Brewer, P. G. Hypoxia by levels: establishing definitions for a altering ocean. Deep Sea Res. I 58, 1212–1226 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Klein, S. G., Steckbauer, A. & Duarte, C. M. Defining CO2 and O2 syndromes of marine biomes within the Anthropocene. Glob. Change Biol. 26, 355–363 (2020).

    Article 

    Google Scholar
     

  • Danabasoglu, G. NCAR CESM2-WACCM Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10028

  • Danabasoglu, G. NCAR CESM2-WACCM Mannequin Output Ready for CMIP6 ScenarioMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10101

  • Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: higher becoming equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Hochachka, P. W. & Somero, G. N. Biochemical Variations (Oxford Univ. Press, 2002).

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a metabolic idea of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar
     

  • Clausen, C. D. & Roth, A. A. Impact of temperature and temperature adaptation on calcification charge within the hermatypic coral Pocillopora damicornis. Mar. Biol. 33, 93–100 (1975).

    Article 

    Google Scholar
     

  • Howe, S. A. & Marshall, A. T. Thermal compensation of metabolism within the temperate coral, Plesiastrea versipora (Lamarck, 1816). J. Exp. Mar. Biol. Ecol. 259, 231–248 (2001).

    Article 

    Google Scholar
     

  • Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).

    Article 

    Google Scholar
     

  • Edmunds, P. J. Impact of elevated temperature on cardio respiration of coral recruits. Mar. Biol. 146, 655–663 (2005).

    Article 

    Google Scholar
     

  • Edmunds, P. J. Differential results of excessive temperature on the respiration of juvenile Caribbean corals. Bull. Mar. Sci. 83, 453–464 (2008).


    Google Scholar
     



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved