Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Increasing oxygen-minimum zones within the tropical oceans. Science 320, 655–658 (2008).
Article
CAS
Google Scholar
Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).
Article
Google Scholar
Breitburg, D. et al. Declining oxygen within the world ocean and coastal waters. Science 359, eaam7240 (2018).
Article
Google Scholar
Bopp, L. et al. A number of stressors of ocean ecosystems within the twenty first century: projections with CMIP5 fashions. Biogeosciences 10, 6225–6245 (2013).
Article
Google Scholar
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and first manufacturing decline from CMIP6 mannequin projections. Biogeosciences 17, 3439–3470 (2020).
Article
CAS
Google Scholar
Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: a overview of its ecological results and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33, 245–303 (1995).
Google Scholar
Altieri, A. H. et al. Tropical useless zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).
Article
CAS
Google Scholar
Nelson, H. R. & Altieri, A. H. Oxygen: the common forex on coral reefs. Coral Reefs 38, 177–198 (2019).
Article
Google Scholar
Hughes, D. J. et al. Coral reef survival beneath accelerating ocean deoxygenation. Nat. Clim. Change 10, 296–307 (2020).
Article
CAS
Google Scholar
Kealoha, A. Okay. et al. Localized hypoxia could have precipitated coral reef mortality on the Flower Backyard Banks. Coral Reefs 39, 119–132 (2020).
Article
Google Scholar
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves beneath world warming. Nature 560, 360–364 (2018).
Article
Google Scholar
Vaquer-Sunyer, R., Duarte, C. M., Jordà, G. & Ruiz-Halpern, S. Temperature dependence of oxygen dynamics and neighborhood metabolism in a shallow Mediterranean macroalgal meadow (Caulerpa prolifera). Estuaries Coast. 35, 1182–1192 (2012).
Article
CAS
Google Scholar
Sutherland, W. J. et al. A 2021 horizon scan of rising world organic conservation points. Tendencies Ecol. Evol. 36, 87–97 (2021).
Article
Google Scholar
Cyronak, T. et al. Diel temperature and pH variability scale with depth throughout numerous coral reef habitats. Limnol. Oceanogr. Lett. 5, 193–203 (2020).
Article
Google Scholar
Grey, J. S., Wu, R. S. S. & Or, Y. Y. Results of hypoxia and natural enrichment on the coastal marine atmosphere. Mar. Ecol. Prog. Ser. 238, 249–279 (2002).
Article
Google Scholar
Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).
Article
CAS
Google Scholar
Vaquer-Sunyer, R. & Duarte, C. M. Temperature results on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).
Article
Google Scholar
Haas, A. F., Smith, J. E., Thompson, M. & Deheyn, D. D. Results of decreased dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2, e235 (2014).
Article
Google Scholar
Johnson, M. D., Swaminathan, S. D., Nixon, E. N., Paul, V. J. & Altieri, A. H. Differential susceptibility of reef-building corals to deoxygenation reveals exceptional hypoxia tolerance. Sci. Rep. 11, 23168 (2021).
Article
CAS
Google Scholar
Gravinese, P. M., Douwes, A., Eaton, Okay. R. & Muller, E. M. Ephemeral hypoxia reduces oxygen consumption within the Caribbean coral Orbicella faveolata. Coral Reefs 41, 13–18 (2021).
Article
Google Scholar
Nilsson, G. E., Östlund-Nilsson, S. & Munday, P. L. Results of elevated temperature on coral reef fishes: lack of hypoxia tolerance and incapacity to acclimate. Comp. Biochem. Physiol. 156, 389–393 (2010).
Article
Google Scholar
DeCarlo, T. M. et al. Mass coral mortality beneath native amplification of two °C ocean warming. Sci. Rep. 7, 44586 (2017).
Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The depth, period, and severity of low aragonite saturation state occasions on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).
Article
Google Scholar
Guzmán, H. M., Cortés, J., Glynn, P. W. & Richmond, R. H. Coral mortality related to dinoflagellate blooms within the Japanese Pacific (Costa Rica and Panama). Mar. Ecol. Prog. Ser. 60, 299–303 (1990).
Article
Google Scholar
Raj, Okay. D. et al. Low oxygen ranges brought on by Noctiluca scintillans bloom kills corals in Gulf of Mannar, India. Sci. Rep. 10, 22133 (2020).
Article
CAS
Google Scholar
Johnson, M. D. et al. Fast ecosystem-scale penalties of acute deoxygenation on a Caribbean coral reef. Nat. Commun. 12, 4522 (2021).
Article
CAS
Google Scholar
Andréfouët, S., Dutheil, C., Menkes, C. E., Bador, M. & Lengaigne, M. Mass mortality occasions in atoll lagoons: environmental management and elevated future vulnerability. Glob. Change Biol. 21, 195–205 (2015).
Article
Google Scholar
Altieri, A. H. & Gedan, Okay. B. Local weather change and useless zones. Glob. Change Biol. 21, 1395–1406 (2015).
Article
Google Scholar
Murphy, J. W. A. & Richmond, R. H. Modifications to coral well being and metabolic exercise beneath oxygen deprivation. PeerJ 4, e1956 (2016).
Article
Google Scholar
Alderdice, R. et al. Divergent expression of hypoxia response techniques beneath deoxygenation in reef‐forming corals aligns with bleaching susceptibility. Glob. Change Biol. 27, 312–326 (2021).
Article
CAS
Google Scholar
Al-Horani, F. A., Tambutté, É. & Allemand, D. Darkish calcification and the day by day rhythm of calcification within the scleractinian coral, Galaxea fascicularis. Coral Reefs 26, 531–538 (2007).
Article
Google Scholar
Wijgerde, T., Jurriaans, S., Hoofd, M., Verreth, J. A. J. & Osinga, R. Oxygen and heterotrophy have an effect on calcification of the scleractinian coral Galaxea fascicularis. PLoS ONE 7, e52702 (2012).
Article
CAS
Google Scholar
Wijgerde, T., Silva, C. I. F., Scherders, V., van Bleijswijk, J. & Osinga, R. Coral calcification beneath day by day oxygen saturation and pH dynamics reveals the essential position of oxygen. Biol. Open 3, 489–493 (2014).
Article
Google Scholar
Deleja, M. et al. Results of hypoxia on coral photobiology and oxidative stress. Biology 11, 1068 (2022).
Alderdice, R. et al. Hypoxia as a physiological cue and pathological stress for coral larvae. Mol. Ecol. 31, 571–587 (2022).
Article
CAS
Google Scholar
Alderdice, R. et al. Disparate inventories of hypoxia gene units throughout corals align with inferred environmental resilience. Entrance. Mar. Sci. 9, 834332 (2022).
Jorissen, H. & Nugues, M. M. Coral larvae keep away from substratum exploration and settlement in low-oxygen environments. Coral Reefs 9, 31–39 (2021).
Article
Google Scholar
Villanueva, R. D., Yap, H. T. & Montaño, M. N. E. Survivorship of coral juveniles in a fish farm atmosphere. Mar. Pollut. Bull. 10, 580–589 (2005).
Article
Google Scholar
Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).
Article
Google Scholar
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Local weather change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).
Article
CAS
Google Scholar
Alderdice, R. et al. Deoxygenation lowers the thermal threshold of coral bleaching. Sci. Rep. 12, 18273 (2022).
Article
CAS
Google Scholar
Steckbauer, A., Klein, S. G. & Duarte, C. M. Additive impacts of deoxygenation and acidification threaten marine biota. Glob. Change Biol. 26, 5602–5612 (2020).
Article
Google Scholar
Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).
Article
CAS
Google Scholar
D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new views and implications for coastal administration and reef survival. Curr. Opin. Environ. Maintain. 7, 82–93 (2014).
Article
Google Scholar
Grégoire, M. et al. A world ocean oxygen database and atlas for assessing and predicting deoxygenation and ocean well being within the open and coastal ocean. Entrance. Mar. Sci. 8, 724913 (2021).
Yates, Okay. Okay., Moore, C. S. & Smiley, N. A. Time Sequence of Autonomous Carbonate System Parameter Measurements from Crocker Reef, Florida, USA (US Geological Survey, 2019); https://doi.org/10.5066/P90NCI8T
Kekuewa, S. A. H. et al. Temporal and spatial variabilities of chemical and bodily parameters on the Heron Island coral reef platform. Aquat. Geochem. 27, 241–268 (2021).
Article
CAS
Google Scholar
Pedersen, Okay. A. Spatiotemporal Variability in Seawater Carbonate Chemistry at Two Contrasting Reef Areas in Bocas del Toro, Panama. MSc thesis, Univ. California (2019).
Web page, H. N. et al. Spatiotemporal variability in seawater carbon chemistry for a coral reef flat in Kāne’ohe Bay, Hawai’i. Limnol. Oceanogr. 64, 913–934 (2018).
Article
Google Scholar
Pezner, A. Okay. et al. Lateral, vertical, and temporal variability of seawater carbonate chemistry at Hog Reef, Bermuda. Entrance. Mar. Sci. 8, 1–18 (2021).
Article
Google Scholar
Ecosystem Sciences Division Nationwide Coral Reef Monitoring Program: Diel Seawater Carbonate Chemistry Observations from a Suite of Instrumentation Deployed at Coral Reef Websites at Tutuila Island, American Samoa from June 23 to July 17, 2018 NCEI Accession 0240606 (Pacific Islands Fisheries Science Middle, 2021).
Ecosystem Sciences Division Nationwide Coral Reef Monitoring Program: Diel Seawater Carbonate Chemistry Observations from a Suite of Instrumentation Deployed at Coral Reef Websites at Baker Island, Jarvis Island, and Palmyra Atoll within the Pacific Distant Islands Marine Nationwide Monument Between 2018-06-12 and 2018-08-07 NCEI Accession 0240686 (Pacific Islands Fisheries Science Middle, 2021).
Rintoul, M. S. et al. The consequences of sunshine depth and stream velocity on biogeochemical variability inside a fringing coral reef in Onna‐son, Okinawa, Japan. J. Geophys. Res. Oceans 127, e2021JC018369 (2022).
Article
CAS
Google Scholar
Kelley, D. & Richards, C. gsw: Gibbs sea water features. R bundle model 1.0-5 https://CRAN.R-project.org/bundle=gsw (2017).
RStudio Crew RStudio: Built-in Improvement for R (RStudio, 2020).
Pezner, A. Okay. et al. Information for: Growing hypoxia on world coral reefs beneath ocean warming. Dryad https://doi.org/10.5061/dryad.41ns1rnj7 (2023).
Pezner, A. Okay. et al. World reef oxygen. GitHub https://github.com/apezner/GlobalReefOxygen (2023).
Kennedy, E. V. et al. Reef cowl, a coral reef classification for world habitat mapping from distant sensing. Sci. Information 8, 196 (2021).
Article
Google Scholar
Dowle, M. & Srinivasan, A. knowledge.desk: extension of ‘data.frame’. R bundle model 1.13.6 https://CRAN.R-project.org/bundle=knowledge.desk (2020).
Rosenberg, R. in Fjord Oceanography: Results of Oxygen Deficiency on Benthic Macrofauna in Fjord oceanography, H. J. Freeland, D. M. Farmer, and C. D. Levings (eds), 499–514 (Plenum Press, 1980).
Hofmann, A. F., Peltzer, E. T., Walz, P. M. & Brewer, P. G. Hypoxia by levels: establishing definitions for a altering ocean. Deep Sea Res. I 58, 1212–1226 (2011).
Article
CAS
Google Scholar
Klein, S. G., Steckbauer, A. & Duarte, C. M. Defining CO2 and O2 syndromes of marine biomes within the Anthropocene. Glob. Change Biol. 26, 355–363 (2020).
Article
Google Scholar
Danabasoglu, G. NCAR CESM2-WACCM Mannequin Output Ready for CMIP6 CMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10028
Danabasoglu, G. NCAR CESM2-WACCM Mannequin Output Ready for CMIP6 ScenarioMIP (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.10101
Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: higher becoming equations. Limnol. Oceanogr. 37, 1307–1312 (1992).
Article
CAS
Google Scholar
Hochachka, P. W. & Somero, G. N. Biochemical Variations (Oxford Univ. Press, 2002).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a metabolic idea of ecology. Ecology 85, 1771–1789 (2004).
Article
Google Scholar
Clausen, C. D. & Roth, A. A. Impact of temperature and temperature adaptation on calcification charge within the hermatypic coral Pocillopora damicornis. Mar. Biol. 33, 93–100 (1975).
Article
Google Scholar
Howe, S. A. & Marshall, A. T. Thermal compensation of metabolism within the temperate coral, Plesiastrea versipora (Lamarck, 1816). J. Exp. Mar. Biol. Ecol. 259, 231–248 (2001).
Article
Google Scholar
Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).
Article
Google Scholar
Edmunds, P. J. Impact of elevated temperature on cardio respiration of coral recruits. Mar. Biol. 146, 655–663 (2005).
Article
Google Scholar
Edmunds, P. J. Differential results of excessive temperature on the respiration of juvenile Caribbean corals. Bull. Mar. Sci. 83, 453–464 (2008).
Google Scholar