Chien, S.-C. & Krumins, J. A. Pure versus city international soil natural carbon shares: a meta-analysis. Sci. Whole Environ. 807, 150999 (2022).
Article
CAS
Google Scholar
Solar, Y., Xie, S. & Zhao, S. Valuing city inexperienced areas in mitigating local weather change: a metropolis‐large estimate of aboveground carbon saved in city inexperienced areas of China’s Capital. Glob. Change Biol. 25, 1717–1732 (2019).
Article
Google Scholar
Bossio, D. et al. The position of soil carbon in pure local weather options. Nat. Maintain. 3, 391–398 (2020).
Article
Google Scholar
Cambou, A. et al. Estimation of soil natural carbon shares of two cities, New York Metropolis and Paris. Sci. Whole Environ. 644, 452–464 (2018).
Article
CAS
Google Scholar
Epp Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal range and will trigger microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).
Article
Google Scholar
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to local weather change. Nature 440, 165–173 (2006).
Article
CAS
Google Scholar
García-Palacios, P. et al. Proof for big microbial-mediated losses of soil carbon beneath anthropogenic warming. Nat. Rev. Earth Environ. 2, 507–517 (2021).
Article
Google Scholar
Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon swimming pools and fluxes in city ecosystems. Environ. Pollut. 116, S107–S118 (2002).
Article
CAS
Google Scholar
Edmondson, J. L. et al. City tree results on soil natural carbon. PLoS ONE 9, e101872 (2014).
Article
Google Scholar
Weissert, L., Salmond, J. & Schwendenmann, L. Variability of soil natural carbon shares and soil CO2 efflux throughout city land use and soil cowl sorts. Geoderma 271, 80–90 (2016).
Article
CAS
Google Scholar
Georgiou, Okay. et al. World shares and capability of mineral-associated soil natural carbon. Nat. Commun. 13, 3797 (2022).
Article
CAS
Google Scholar
Cotrufo, M. F. & Lavallee, J. M. Soil natural matter formation, persistence, and functioning: a synthesis of present understanding to tell its conservation and regeneration. Adv. Agron. 172, 1–66 (2022).
Article
Google Scholar
Kleber, M. et al. Mineral–natural associations: formation, properties, and relevance in soil environments. Adv. Agron. 130, 1–140 (2015).
Article
Google Scholar
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage knowledgeable by particulate and mineral-associated natural matter. Nat. Geosci. 12, 989–994 (2019).
Article
CAS
Google Scholar
Plaza, C. et al. Ecosystem productiveness has a stronger affect than soil age on floor soil carbon storage throughout international biomes. Commun. Earth Environ. 3, 233 (2022).
Article
Google Scholar
Hengl, T. et al. SoilGrids250m: international gridded soil data based mostly on machine studying. PLoS ONE 12, e0169748 (2017).
Article
Google Scholar
IPCC Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Scharenbroch, B., Day, S., Trammell, T. & Pouyat, R. in City Soils (eds Lal, R. & Stewart, B. A.) Ch. 6 (CRC Press, 2017).
Crowther, T. W. et al. Sensitivity of worldwide soil carbon shares to mixed nutrient enrichment. Ecol. Lett. 22, 936–945 (2019).
Article
CAS
Google Scholar
Delgado-Baquerizo, M. et al. The affect of soil age on ecosystem construction and performance throughout biomes. Nat. Commun. 11, 4721 (2020).
Article
CAS
Google Scholar
Frostegård, Å., Bååth, E. & Tunlio, A. Shifts within the construction of soil microbial communities in limed forests as revealed by phospholipid fatty acid evaluation. Soil Biol. Biochem. 25, 723–730 (1993).
Article
Google Scholar
Qin, S. et al. Temperature sensitivity of SOM decomposition ruled by combination safety and microbial communities. Sci. Adv. 5, eaau1218 (2019).
Article
CAS
Google Scholar
Delgado-Baquerizo, M. et al. World homogenization of the construction and performance within the soil microbiome of city greenspaces. Sci. Adv. 7, eabg5809 (2021).
Article
CAS
Google Scholar
Mundim, Okay. C., Baraldi, S., Machado, H. G. & Vieira, F. M. Temperature coefficient (Q10) and its purposes in organic programs: past the Arrhenius idea. Ecol. Mannequin. 431, 109127 (2020).
Article
Google Scholar
Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, development, and carbon mineralization. ISME J. 15, 2738–2747 (2021).
Article
CAS
Google Scholar
Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to take away carbonates previous to complete natural carbon or carbon‐13 isotopic evaluation. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).
Article
CAS
Google Scholar
Sokol, N. W. & Bradford, M. A. Microbial formation of steady soil carbon is extra environment friendly from belowground than aboveground enter. Nat. Geosci. 12, 46–53 (2019).
Article
CAS
Google Scholar
Fick, S. & Hijmans, R. WorldClim 2: nouvelles surfaces climatiques de résolution spatiale de 1 km pour les zones terrestres mondiales. Int. J. Climatol. 37, 4302–4315 (2017).
Article
Google Scholar
Lembrechts, J. J. et al. World maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2021).
Article
Google Scholar
Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary evaluation of the efficiency of the Landsat 8/OLI land floor reflectance product. Distant Sens. Environ. 185, 46–56 (2016).
Article
Google Scholar
Zhang, L. et al. Direct and oblique impacts of urbanization on vegetation development internationally’s cities. Sci. Adv. 8, eabo0095 (2022).
Article
Google Scholar
Richards, D. R. & Belcher, R. N. World modifications in city vegetation cowl. Distant Sens. 12, 23 (2019).
Article
Google Scholar
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in international drylands. Science 335, 214–218 (2012).
Article
CAS
Google Scholar
Frostegård, Å., Tunlid, A. & Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1621–1625 (2011).
Article
Google Scholar
Shi, B. et al. Temporal modifications within the spatial variability of soil respiration in a meadow steppe: the position of abiotic and biotic components. Agric. Meteorol. 287, 107958 (2020).
Article
Google Scholar
Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in international drylands. Nat. Ecol. Evol. 3, 232–238 (2019).
Article
Google Scholar
Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their practical attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).
Article
CAS
Google Scholar
Fierer, N. et al. Reconstructing the microbial range and performance of pre-agricultural tallgrass prairie soils in the USA. Science 342, 621–624 (2013).
Article
CAS
Google Scholar
Meyer, F. et al. The metagenomics RAST server–a public useful resource for the automated phylogenetic and practical evaluation of metagenomes. BMC Bioinformatics 9, 386 (2008).
Article
CAS
Google Scholar
Oksanen, J. et al. Package deal ‘vegan’: neighborhood ecology. R bundle model 2.2-0 (2014); http://CRAN.Rproject.org/bundle=vegan
R Core Crew. R: A Language and Setting for Statistical Computing (R Basis for Statistical Computing, 2013); http://www.R-project.org/
Bates, D., Mächler, M., Bolker, B. & Walker, S. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).
Article
Google Scholar
Kunzetsova, A., Brockhoff, P. & Christensen, R. lmerTest bundle: checks in linear blended impact fashions. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
Menard, S. Utilized Logistic Regression Evaluation 2nd edn (SAGE Publications, 2001).
Schermelleh-Engel, Okay., Moosbrugger, H. & Müller, H. Evaluating the match of structural equation fashions: checks of significance and descriptive goodness-of-fit measures. Strategies Psychol. Res. 8, 23–74 (2003).
Google Scholar
Akaike, H. A brand new have a look at the statistical mannequin identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).
Article
Google Scholar
Berdugo, M. et al. World ecosystem thresholds pushed by aridity. Science 367, 787–790 (2020).
Article
CAS
Google Scholar
Feng, Y. et al. Temperature thresholds drive the worldwide distribution of soil fungal decomposers. Glob. Change Biol. 28, 2779–2789 (2022).
Article
Google Scholar
Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression mannequin estimation and inference. BMC Bioinformatics 18, 454 (2017).
Article
Google Scholar