Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of local weather change on the way forward for biodiversity. Ecol. Lett. 15, 365–377 (2012).
Article
Google Scholar
Dawson, T. P., Jackson, S. T., Home, J. I., Prentice, I. C. & Mace, G. M. Past predictions: biodiversity conservation in a altering local weather. Science 332, 53–58 (2011).
Article
CAS
Google Scholar
Thomas, C. D. et al. Extinction danger from local weather change. Nature 427, 145–148 (2004).
Article
CAS
Google Scholar
Chen, I.-C., Hill, J. Ok., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Fast vary shifts of species related to excessive ranges of local weather warming. Science 333, 1024–1026 (2011).
Article
CAS
Google Scholar
Lenoir, J. et al. Species higher observe local weather warming within the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Article
Google Scholar
Lenoir, J. & Svenning, J. C. Local weather‐associated vary shifts—a world multidimensional synthesis and new analysis instructions. Ecography 38, 15–28 (2015).
Article
Google Scholar
Thomas, C. D. Translocation of species, local weather change, and the top of attempting to recreate previous ecological communities. Developments Ecol. Evol. 26, 216–221 (2011).
Article
Google Scholar
Heller, N. E. & Zavaleta, E. S. Biodiversity administration within the face of local weather change: a overview of twenty-two years of suggestions. Biol. Conserv. 142, 14–32 (2009).
Article
Google Scholar
Bramer, I. et al. Advances in monitoring and modelling local weather at ecologically related scales. Adv. Ecol. Res. 58, 101–161 (2018).
Article
Google Scholar
Maclean, I. M. D., Bennie, J. J., Scott, A. J. & Wilson, R. J. A high-resolution mannequin of soil and floor water situations. Ecol. Modell. 237, 109–119 (2012).
Article
Google Scholar
Maclean, I. M. D., Suggitt, A. J., Wilson, R. J., Duffy, J. P. & Bennie, J. J. Superb‐scale local weather change: modelling spatial variation in biologically significant charges of warming. Glob. Change Biol. 23, 256–268 (2017).
Article
Google Scholar
Potter, Ok. A., Arthur Woods, H. & Pincebourde, S. Microclimatic challenges in international change biology. Glob. Change Biol. 19, 2932–2939 (2013).
Article
Google Scholar
Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale impacts bioclimate mannequin projections of local weather change impacts on mountain crops. Glob. Change Biol. 14, 1089–1103 (2008).
Article
Google Scholar
Randin, C. F. et al. Local weather change and plant distribution: native fashions predict excessive‐elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).
Article
Google Scholar
Dobrowski, S. Z. A climatic foundation for microrefugia: the affect of terrain on local weather. Glob. Change Biol. 17, 1022–1035 (2011).
Article
Google Scholar
Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: an R bundle for modelling meso‐and microclimate. Strategies Ecol. Evol. 10, 280–290 (2019).
Article
Google Scholar
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Model 4 of the CRU TS month-to-month high-resolution gridded multivariate local weather dataset. Sci. Knowledge 7, 109 (2020).
Article
Google Scholar
Hollis, D., McCarthy, M., Kendon, M., Legg, T. & Simpson, I. HadUK‐Grid—a brand new UK dataset of gridded local weather observations. Geosci. Knowledge J. 6, 151–159 (2019).
Article
Google Scholar
GBIF.org. GBIF Prevalence Knowledge Downloads historic (1977–1995): https://doi.org/10.15468/dl.38928w and up to date: (2003–2021) https://doi.org/10.15468/dl.5cdeuy Accessed from R through rgbif (https://github.com/ropensci/rgbif) on 2022-07-31.
Preston, C. D., Pearman, D. & Dines, T. D. New Atlas of the British & Irish Flora (Oxford Univ. Press, 2002).
Bennallick, I. et al. Crimson Knowledge Guide for Cornwall and the Isles of Scilly 2nd edn (Croceago Press, 2009).
Haesen, S. et al. ForestTemp–sub‐cover microclimate temperatures of European forests. Glob. Change Biol. 27, 6307–6319 (2021).
Article
CAS
Google Scholar
Blonder, B. et al. Excessive and extremely heterogeneous microclimates in selectively logged tropical forests. Entrance. For. Glob. Change 1, 5 (2018).
Article
Google Scholar
Marsh, C. D. et al. Measuring and modelling microclimatic air temperature in a traditionally degraded tropical forest. Int. J. Biometeorol. 66, 1283–1295 (2022).
Article
Google Scholar
Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia underneath anthropogenic local weather change: implications for species redistribution. Ecography 40, 253–266 (2017).
Article
Google Scholar
Hickling, R. et al. The distributions of a variety of taxonomic teams are increasing polewards. Glob. Change Biol. 12, 450–455 (2006).
Article
Google Scholar
Bertrand, R. et al. Adjustments in plant group composition lag behind local weather warming in lowland forests. Nature 479, 517–520 (2011).
Article
CAS
Google Scholar
Bertrand, R. et al. Ecological constraints improve the climatic debt in forests. Nat. Commun. 7, 12643 (2016).
Article
CAS
Google Scholar
Lembrechts, J. J. & Lenoir, J. Microclimatic situations wherever at any time! Glob. Change Biol. 26, 337–339 (2020).
Article
Google Scholar
Gillingham, P., Huntley, B., Kunin, W. & Thomas, C. The impact of spatial decision on projected responses to local weather warming. Divers. Distrib. 18, 990–1000 (2012).
Article
Google Scholar
Araújo, M. B. et al. Requirements for distribution fashions in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
Article
Google Scholar
Araújo, M. B., Alagador, D., Cabeza, M., Nogués‐Bravo, D. & Thuiller, W. Local weather change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
Article
Google Scholar
Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Utilizing in situ administration to preserve biodiversity underneath local weather change. J. Appl. Ecol. 53, 885–894 (2016).
Article
Google Scholar
R Core Workforce R: A Language and Surroundings for Statistical Computing (R Basis for Statistical Computing, 2022).
Kearney, M. R., Gillingham, P. Ok., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A technique for computing hourly, historic, terrain-corrected microclimate wherever on Earth. Strategies Ecol. Evol. 11, 38–43 (2020).
Article
Google Scholar
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis venture. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).
Article
Google Scholar
Kearney, M. R. & Porter, W. P. NicheMapR—an R bundle for biophysical modelling: the microclimate mannequin. Ecography 40, 664–674 (2017).
Article
Google Scholar
Maclean, I. M. D. & Early R. R code and knowledge to accompany macroclimate knowledge over-estimate vary shifts of crops in response to local weather change. Zenodo https://doi.org/10.5281/zenodo.7221995 (2022).
Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: Instruments for Spatial Knowledge https://doi.org/10.5065/D6W957CT (UCAR, 2015).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very excessive decision interpolated local weather surfaces for international land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article
Google Scholar
Xu, T. & Hutchinson, M. ANUCLIM model 6.1 Consumer Information (Fenner College of Surroundings and Society, The Australian Natl Univ., 2011).
Pearson, R. G. & Dawson, T. P. Predicting the impacts of local weather change on the distribution of species: are bioclimate envelope fashions helpful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).
Article
Google Scholar
Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Deciding on predictors to maximise the transferability of species distribution fashions: classes from cross‐continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).
Article
Google Scholar
Hughes, A. C. et al. Sampling biases form our view of the pure world. Ecography 44, 1259–1269 (2021).
Article
Google Scholar
Baker, D. A., Maclean, I. M. D., Goodall, M. & Gaston, Ok. J. Correlations between spatial sampling biases and environmental niches have an effect on species distribution fashions. Glob. Ecol. Biogeogr. 31, 1038–1050 (2022).
Article
Google Scholar
Brown, J. L. SDM toolbox: a python‐based mostly GIS toolkit for panorama genetic, biogeographic and species distribution mannequin analyses. Strategies Ecol. Evol. 5, 694–700 (2014).
Article
Google Scholar
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a complete analysis. Ecography 31, 161–175 (2008).
Article
Google Scholar
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Fashions (CRC Press, 1990).
Breiman, L. Random forests. Mach. Study. 45, 5–32 (2001).
Article
Google Scholar
F Dormann, C. et al. Strategies to account for spatial autocorrelation within the evaluation of species distributional knowledge: a overview. Ecography 30, 609–628 (2007).
Article
Google Scholar
Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).
Article
Google Scholar
Büttner, G. CORINE Land Cowl and Land Cowl Change Merchandise. In Land Use and Land Cowl Mapping in Europe (eds Manakos, I. & Braun, M. 55–74 (Springer, 2014).
Land Cowl Map 2020 (UKCEH Environmental Info Knowledge Centre, 2020).
Di Cola, V. et al. ecospat: an R bundle to assist spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Article
Google Scholar
Pebesma, E. & Bivand, R. Courses and strategies for spatial knowledge in R. R Information 5, 9–13 (2005).
Google Scholar