Connect with us

Climate

Coastal vegetation and estuaries are collectively a greenhouse gasoline sink

Published

on


  • IPCC Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Tian, H. et al. The terrestrial biosphere as a web supply of greenhouse gases to the ambiance. Nature 531, 225–228 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, P. A. et al. World carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. World methane and nitrous oxide emissions from inland waters and estuaries. Glob. Chang. Biol. 28, 4713–4725 (2022).

    Article 

    Google Scholar
     

  • Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the worldwide carbon cycle. Nature 603, 401–410 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Abril, G. & Borges, A. V. Concepts and views: carbon leaks from flooded land: do we have to replumb the inland water lively pipe? Biogeosciences 16, 769–784 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cai, W.-J. Estuarine and coastal ocean carbon paradox: CO2 sinks or websites of terrestrial carbon incineration? Ann. Rev. Mar. Sci. 3, 123–145 (2011).

    Article 

    Google Scholar
     

  • Bauer, J. E. et al. The altering carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. T. A. et al. Air–sea exchanges of CO2 on this planet’s coastal seas. Biogeosciences 10, 6509–6544 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Laruelle, G. G. et al. World multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).

    Article 

    Google Scholar
     

  • Macreadie, P. I. et al. Blue carbon as a pure local weather resolution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. Ok. The potential for ocean-based local weather motion: detrimental emissions applied sciences and past. Entrance. Clim. 2, 575716 (2021).

    Article 

    Google Scholar
     

  • Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985 (2018).

    Article 

    Google Scholar
     

  • Oreska, M. P. J. et al. The greenhouse gasoline offset potential from seagrass restoration. Sci. Rep. 10, 7325 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rosentreter, J. A., Al‐Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, P. & Gattuso, J. Carbon removing utilizing coastal blue carbon ecosystems is unsure and unreliable, with questionable climatic cost-effectiveness. Entrance. Clim. 4, 853666 (2022).

    Article 

    Google Scholar
     

  • Rosentreter, J. A. et al. Half of world methane emissions come from extremely variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Al‐Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. 26, 2988–3005 (2020).

    Article 

    Google Scholar
     

  • Borges, A. V. & Abril, G. in Treatise on Estuarine and Coastal Science Vol. 5 119–161 (Elsevier, 2011).

  • Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Murray, R., Erler, D., Rosentreter, J., Maher, D. & Eyre, B. A seasonal supply and sink of nitrous oxide in mangroves: insights from focus, isotope, and isotopomer measurements. Geochim. Cosmochim. Acta 238, 169–192 (2018).

    Article 
    CAS 

    Google Scholar
     

  • De Wilde, H. P. J. & De Bie, M. J. M. Nitrous oxide within the Schelde estuary: manufacturing by nitrification and emission to the ambiance. Mar. Chem. 69, 203–216 (2000).

    Article 

    Google Scholar
     

  • Murray, R. H., Erler, D. V. & Eyre, B. D. Nitrous oxide fluxes in estuarine environments: response to world change. Glob. Change Biol. 21, 3219–3245 (2015).

    Article 

    Google Scholar
     

  • Kroeze, C., Dumont, E. & Seitzinger, S.Future developments in emissions of N2O from rivers and estuaries. J. Integr. Environ. Sci. 7, 71–78 (2010).

    Article 

    Google Scholar
     

  • Maavara, T. et al. Nitrous oxide emissions from inland waters: are IPCC estimates too excessive? Glob. Change Biol. 25, 473–488 (2019).

    Article 

    Google Scholar
     

  • Ciais, P. et al. Definitions and strategies to estimate regional land carbon fluxes for the second section of the REgional Carbon Cycle Evaluation and Processes Challenge (RECCAP-2). Geosci. Mannequin Dev. 15, 1289–1316 (2020).

    Article 

    Google Scholar
     

  • Bunting, P. et al. The World Mangrove Watch—a brand new 2010 world baseline of mangrove extent. Distant Sens. 10, 1669 (2018).

    Article 

    Google Scholar
     

  • Mcowen, C. et al. A worldwide map of saltmarshes (v6.1). Biodivers. Information J. 5, e11764 (2017).

    Article 

    Google Scholar
     

  • Quick, F. T. World Distribution of Seagrasses (Model 6.0). Sixth Replace to the Information Layer Utilized in Inexperienced and Quick (2003). (UN Setting Programme World Conservation Monitoring Centre, 2017); https://information.unep-wcmc.org/datasets/7

  • Laruelle, G. G., Rosentreter, J. A. & Regnier P. Extrapolation based mostly regionalized re-evaluation of the worldwide estuarine floor space. Preprint at Earth ArXiv https://doi.org/10.31223/X5X664 (2023).

  • Dürr, H. H. et al. Worldwide typology of nearshore coastal techniques: defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34, 441–458 (2011).

    Article 

    Google Scholar
     

  • Woodwell, G. M., Wealthy, P. H. & Corridor, C. A. S. in Carbon and the Biosphere (eds Woodwell, G. M. & Pecan, E. V.) 221–240 (Technical Data Middle, United States Atomic Power Fee & Nationwide Technical Data Service, 1973).

  • Stewart, B. T., Santos, I. R., Tait, D. R., Macklin, P. A. & Maher, D. T. Submarine groundwater discharge and related fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated through radium isotopes. Mar. Chem. 174, 1–12 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Borges, A. V. et al. Variability of the gasoline switch velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27, 593–603 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Frankignoulle, M. Carbon dioxide emission from European estuaries. Science 282, 434–436 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Regnier, P. et al. Modelling estuarine biogeochemical dynamics: from the native to the worldwide scale. Aquat. Geochem. 19, 591–626 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lovelock, C. E. & Reef, R. Variable impacts of local weather change on blue carbon. One Earth 3, 195–211 (2020).

    Article 

    Google Scholar
     

  • Alongi, D. M. Carbon biking and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).

    Article 

    Google Scholar
     

  • Alongi, D. M. Carbon steadiness in salt marsh and mangrove ecosystems: a worldwide synthesis. J. Mar. Sci. Eng. 8, 767 (2020).

    Article 

    Google Scholar
     

  • Bange, H. W., Bartell, U. H., Rapsomanikis, S. & Andreae, M. O. Methane within the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob. Biogeochem. Cycles 8, 465–480 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Gelesh, L., Marshall, Ok., Boicourt, W. & Lapham, L. Methane concentrations enhance in backside waters throughout summertime anoxia within the extremely eutrophic estuary, Chesapeake Bay, U.S.A. Limnol. Oceanogr. 61, S253–S266 (2016).

    Article 

    Google Scholar
     

  • Koné, Y. J. M., Abril, G., Delille, B. & Borges, A. V. Seasonal variability of methane within the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100, 21–37 (2010).

    Article 

    Google Scholar
     

  • Donato, D. C. et al. Mangroves among the many most carbon-rich forests within the tropics. Nat. Geosci. 4, 293–297 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyre, B. D. Groundwater-derived dissolved inorganic and natural carbon exports from a mangrove tidal creek: the lacking mangrove carbon sink? Limnol. Oceanogr. 58, 475–488 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rao, G. D. & Sarma, V. V. S. S. Variability in concentrations and fluxes of methane within the Indian estuaries. Estuaries Coasts 39, 1639–1650 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bange, H. W., Rapsomanikis, S. & Andreae, M. O. The Aegean Sea as a supply of atmospheric nitrous oxide and methane. Mar. Chem. 53, 41–49 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Chmura, G. L., Kellman, L., van Ardenne, L. & Guntenspergen, G. R. Greenhouse gasoline fluxes from salt marshes uncovered to power nutrient enrichment. PLoS ONE 11, e0149937 (2016).

    Article 

    Google Scholar
     

  • Dausse, A. et al. Biogeochemical functioning of grazed estuarine tidal marshes alongside a salinity gradient. Estuar. Coast. Shelf Sci. 100, 83–92 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J., Wells, N. S., Erler, D. V. & Eyre, B. D. Land‐use depth will increase benthic N2O emissions throughout three sub‐tropical estuaries. J. Geophys. Res. Biogeosciences 127, e2022JG006899 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Murray, N. J. et al. Excessive-resolution mapping of losses and positive factors of Earth’s tidal wetlands. Science 376, 744–749 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shields, M. R. et al. Carbon storage within the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 10, 846–851 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gillies, S., Ward, B., & Petersen, A. S. Rasterio. GitHub https://github.com/mapbox/rasterio (2013).

  • Jordahl, Ok. et al. Geopandas/geopandas: v0.8.1. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).

  • Mayorga, E. et al. World Nutrient Export from WaterSheds 2 (NEWS 2): mannequin growth and implementation. Environ. Mannequin. Softw. 25, 837–853 (2010).

    Article 

    Google Scholar
     

  • Forster, et al. in Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  • R Core Growth Group. R: A Language and Setting for Statistical Computing (R Basis for Statistical Computing, 2020).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved