Connect with us

Climate

Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

Published

on


  • Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article 

    Google Scholar
     

  • King, G. Responses of atmospheric methane consumption by soils to global climate change. Glob. Change Biol. 3, 351–362 (1997).

    Article 

    Google Scholar
     

  • McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kuhn, M. et al. BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).

    Article 

    Google Scholar
     

  • Parmentier, F.-J. W. et al. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46, 53–69 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bruhwiler, L., Parmentier, F. J. W., Crill, P., Leonard, M. & Palmer, P. I. The Arctic carbon cycle and its response to changing climate. Curr. Clim. Change Rep. 7, 14–34 (2021).

    Article 

    Google Scholar
     

  • Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Change 10, 317–321 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rößger, N., Sachs, T., Wille, C., Boike, J. & Kutzbach, L. Seasonal increase of methane emissions linked to warming in Siberian tundra. Nat. Clim. Change 12, 1031–1036 (2022).

    Article 

    Google Scholar
     

  • Knox, S. H. et al. FLUXNET-CH4 synthesis activity: objectives, observations, and future directions. Bull. Am. Meteorol. Soc. 100, 2607–2632 (2019).

    Article 

    Google Scholar
     

  • Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).

    Article 

    Google Scholar
     

  • Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions—a significant component of annual emissions across northern ecosystems. Glob. Change Biol. 24, 3331–3343 (2018).

    Article 

    Google Scholar
     

  • Hermesdorf, L. et al. Effects of fire on CO2, CH4, and N2O exchange in a well-drained Arctic heath ecosystem. Glob. Change Biol. 28, 4882–4899 (2022).

    Article 

    Google Scholar
     

  • Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).

    Article 

    Google Scholar
     

  • Flessa, H. et al. Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Glob. Change Biol. 14, 2040–2056 (2008).

    Article 

    Google Scholar
     

  • Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).

    Article 

    Google Scholar
     

  • Juutinen, S. et al. Variation in CO2 and CH4 fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia. Biogeosciences 19, 3151–3167 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lau, M. C. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).

    Article 

    Google Scholar
     

  • Whalen, S. C. & Reeburgh, W. S. Consumption of atmospheric methane by tundra soils. Nature 346, 160–162 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Bartlett, K. B. & Harriss, R. C. Review and assessment of methane emissions from wetlands. Chemosphere 26, 261–320 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).

    Article 

    Google Scholar
     

  • Olefeldt, D. et al. The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).

    Article 

    Google Scholar
     

  • Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).

    Article 

    Google Scholar
     

  • Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol Rev. 60, 439–471 (1996).

    Article 
    CAS 

    Google Scholar
     

  • D’Imperio, L., Nielsen, C. S., Westergaard‐Nielsen, A., Michelsen, A. & Elberling, B. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape‐integrated CH4 budget. Glob. Change Biol. 23, 966–976 (2017).

    Article 

    Google Scholar
     

  • Smith, K. A. et al. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob. Change Biol. 6, 791–803 (2000).

    Article 

    Google Scholar
     

  • Ball, B. C. et al. The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. J. Geophys. Res. 102, 23309–23317 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Pihlatie, M. K. et al. Comparison of static chambers to measure CH4 emissions from soils. Agric. For. Meteorol. 171–172, 124–136 (2013).

    Article 

    Google Scholar
     

  • Christiansen, J. R., Outhwaite, J. & Smukler, S. M. Comparison of CO2, CH4 and N2O soil–atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agric. For. Meteorol. 211, 48–57 (2015).

    Article 

    Google Scholar
     

  • Järveoja, J., Nilsson, M. B., Crill, P. M. & Peichl, M. Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature response. Nat. Commun. 11, 4255 (2020).

    Article 

    Google Scholar
     

  • Kuzyakov, Y. & Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 33, 1915–1925 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

    Article 

    Google Scholar
     

  • Chadburn, S. E. et al. Modeled microbial dynamics explain the apparent temperature sensitivity of wetland methane emissions. Glob. Biogeochem. Cycles 34, e2020GB006678 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Maier, M., Cordes, M. & Osterholt, L. Soil respiration and CH4 consumption covary on the plot scale. Geoderma 382, 114702 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Subke, J.-A. et al. Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil. Soil Biol. Biochem. 116, 323–332 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. Soil organic carbon is a key determinant of CH4 sink in global forest soils. Nat. Commun. 14, 3110 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).

    Article 

    Google Scholar
     

  • Henneron, L., Kardol, P., Wardle, D. A., Cros, C. & Fontaine, S. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytol. 228, 1269–1282 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wild, B. et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 75, 143–151 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wild, B., Li, J., Pihlblad, J., Bengtson, P. & Rütting, T. Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biol. Biochem. 129, 71–79 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl Acad. Sci. USA 116, 8515–8524 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Gwak, J.-H. et al. Sulfur and methane oxidation by a single microorganism. Proc. Natl Acad. Sci. USA 119, e2114799119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oh, Y. et al. A scalable model for methane consumption in arctic mineral soils. Geophys. Res. Lett. 43, 5143–5150 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y. & Bodelier, P. L. E. Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma 259, 337–346 (2015).

    Article 

    Google Scholar
     

  • Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Stark, S. et al. Decreased soil microbial nitrogen under vegetation ‘shrubification’ in the subarctic forest–tundra ecotone: the potential role of increasing nutrient competition between plants and soil microorganisms. Ecosystems https://doi.org/10.1007/s10021-023-00847-z (2023).

  • Daebeler, A. et al. Interactions between thaumarchaea, nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 8, 2397–2410 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Diel and seasonal dynamics of ecosystem‐scale methane flux and their determinants in an alpine meadow. J. Geophys. Res. Biogeosci. 124, 1731–1745 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

  • Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–319 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 45509 (2011).

    Article 

    Google Scholar
     

  • Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    Article 

    Google Scholar
     

  • Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R. & Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 9, 3305–3322 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gaumont‐Guay, D. et al. Soil CO2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance. Glob. Change Biol. 15, 1302–1319 (2009).

    Article 

    Google Scholar
     

  • Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).

    Article 

    Google Scholar
     

  • Eckhardt, T. et al. Partitioning net ecosystem exchange of CO2 on the pedon scale in the Lena River Delta, Siberia. Biogeosciences 16, 1543–1562 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Patrignani, A. & Ochsner, T. E. Canopeo: a powerful new tool for measuring fractional green canopy cover. Agron. J. 107, 2312–2320 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Okruszko, H. in Organic Soils and Peat Materials for Sustainable Agriculture (eds Léon-Etienne, P. & Ilnicki, P.) 47–54 (CRC, 2003).

  • Walthert, L. et al. Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl. J. Plant Nutr. Soil Sci. 173, 207–216 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Marushchak, M. E. et al. Thawing Yedoma permafrost is a neglected nitrous oxide source. Nat. Commun. 12, 7107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • R Core Team R: A Language and Environment for Statistical Computing (The R Foundation for Statistical Computing, 2022).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).


    Google Scholar
     

  • Tate, K. R. Soil methane oxidation and land-use change—from process to mitigation. Soil Biol. Biochem. 80, 260–272 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Curry, C. L. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6, 2355–2367 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Knox, S. H. et al. Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Glob. Change Biol. 27, 3582–3604 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ogle, D. H., Doll, J. C., Wheeler, P. & Dinno, A. FSA: Simple fisheries stock assessment methods. R package version 0.9.4 (2023).

  • Graves, S., Piepho, H.-P. & Selzer, L. multcompView: visualizations of paired comparisons. R package version 0.1-8 (2019).

  • Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).

    Article 

    Google Scholar
     

  • Voigt, C. et al. Atmospheric methane consumption by upland soils in the Western Canadian Arctic and Finnish Lapland (2018–2021). PANGAEA https://doi.org/10.1594/PANGAEA.953120 (2023).

  • Nesic, Z. Voigt2023_CH4_uptake (Version 1.0). GitHub https://github.com/znesic/Voigt2023_CH4_uptake (2023).

  • Voigt, C. & Kou, D. R-code for random forest models related to article ‘Arctic soil methane sink increases with drier conditions and higher ecosystem respiration’. Zenodo https://doi.org/10.5281/zenodo.8152386 (2023).



  • Source link

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved