Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
Article
Google Scholar
King, G. Responses of atmospheric methane consumption by soils to global climate change. Glob. Change Biol. 3, 351–362 (1997).
Article
Google Scholar
McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).
Article
CAS
Google Scholar
Kuhn, M. et al. BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).
Article
Google Scholar
Parmentier, F.-J. W. et al. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46, 53–69 (2017).
Article
CAS
Google Scholar
Bruhwiler, L., Parmentier, F. J. W., Crill, P., Leonard, M. & Palmer, P. I. The Arctic carbon cycle and its response to changing climate. Curr. Clim. Change Rep. 7, 14–34 (2021).
Article
Google Scholar
Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Change 10, 317–321 (2020).
Article
CAS
Google Scholar
Rößger, N., Sachs, T., Wille, C., Boike, J. & Kutzbach, L. Seasonal increase of methane emissions linked to warming in Siberian tundra. Nat. Clim. Change 12, 1031–1036 (2022).
Article
Google Scholar
Knox, S. H. et al. FLUXNET-CH4 synthesis activity: objectives, observations, and future directions. Bull. Am. Meteorol. Soc. 100, 2607–2632 (2019).
Article
Google Scholar
Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).
Article
Google Scholar
Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions—a significant component of annual emissions across northern ecosystems. Glob. Change Biol. 24, 3331–3343 (2018).
Article
Google Scholar
Hermesdorf, L. et al. Effects of fire on CO2, CH4, and N2O exchange in a well-drained Arctic heath ecosystem. Glob. Change Biol. 28, 4882–4899 (2022).
Article
Google Scholar
Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).
Article
Google Scholar
Flessa, H. et al. Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Glob. Change Biol. 14, 2040–2056 (2008).
Article
Google Scholar
Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).
Article
Google Scholar
Juutinen, S. et al. Variation in CO2 and CH4 fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia. Biogeosciences 19, 3151–3167 (2022).
Article
CAS
Google Scholar
Lau, M. C. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).
Article
CAS
Google Scholar
Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
Article
Google Scholar
Whalen, S. C. & Reeburgh, W. S. Consumption of atmospheric methane by tundra soils. Nature 346, 160–162 (1990).
Article
CAS
Google Scholar
Bartlett, K. B. & Harriss, R. C. Review and assessment of methane emissions from wetlands. Chemosphere 26, 261–320 (1993).
Article
CAS
Google Scholar
Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
Article
Google Scholar
Olefeldt, D. et al. The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).
Article
Google Scholar
Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).
Article
Google Scholar
Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol Rev. 60, 439–471 (1996).
Article
CAS
Google Scholar
D’Imperio, L., Nielsen, C. S., Westergaard‐Nielsen, A., Michelsen, A. & Elberling, B. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape‐integrated CH4 budget. Glob. Change Biol. 23, 966–976 (2017).
Article
Google Scholar
Smith, K. A. et al. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob. Change Biol. 6, 791–803 (2000).
Article
Google Scholar
Ball, B. C. et al. The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. J. Geophys. Res. 102, 23309–23317 (1997).
Article
CAS
Google Scholar
Pihlatie, M. K. et al. Comparison of static chambers to measure CH4 emissions from soils. Agric. For. Meteorol. 171–172, 124–136 (2013).
Article
Google Scholar
Christiansen, J. R., Outhwaite, J. & Smukler, S. M. Comparison of CO2, CH4 and N2O soil–atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agric. For. Meteorol. 211, 48–57 (2015).
Article
Google Scholar
Järveoja, J., Nilsson, M. B., Crill, P. M. & Peichl, M. Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature response. Nat. Commun. 11, 4255 (2020).
Article
Google Scholar
Kuzyakov, Y. & Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 33, 1915–1925 (2001).
Article
CAS
Google Scholar
Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).
Article
Google Scholar
Chadburn, S. E. et al. Modeled microbial dynamics explain the apparent temperature sensitivity of wetland methane emissions. Glob. Biogeochem. Cycles 34, e2020GB006678 (2020).
Article
CAS
Google Scholar
Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).
Article
CAS
Google Scholar
Maier, M., Cordes, M. & Osterholt, L. Soil respiration and CH4 consumption covary on the plot scale. Geoderma 382, 114702 (2021).
Article
CAS
Google Scholar
Subke, J.-A. et al. Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil. Soil Biol. Biochem. 116, 323–332 (2018).
Article
CAS
Google Scholar
Lee, J. et al. Soil organic carbon is a key determinant of CH4 sink in global forest soils. Nat. Commun. 14, 3110 (2023).
Article
CAS
Google Scholar
Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).
Article
Google Scholar
Henneron, L., Kardol, P., Wardle, D. A., Cros, C. & Fontaine, S. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytol. 228, 1269–1282 (2020).
Article
CAS
Google Scholar
Wild, B. et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 75, 143–151 (2014).
Article
CAS
Google Scholar
Wild, B., Li, J., Pihlblad, J., Bengtson, P. & Rütting, T. Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biol. Biochem. 129, 71–79 (2019).
Article
CAS
Google Scholar
Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022).
Article
CAS
Google Scholar
Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl Acad. Sci. USA 116, 8515–8524 (2019).
Article
CAS
Google Scholar
Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).
Article
CAS
Google Scholar
Gwak, J.-H. et al. Sulfur and methane oxidation by a single microorganism. Proc. Natl Acad. Sci. USA 119, e2114799119 (2022).
Article
CAS
Google Scholar
Oh, Y. et al. A scalable model for methane consumption in arctic mineral soils. Geophys. Res. Lett. 43, 5143–5150 (2016).
Article
CAS
Google Scholar
Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).
Article
CAS
Google Scholar
Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y. & Bodelier, P. L. E. Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma 259, 337–346 (2015).
Article
Google Scholar
Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
Article
CAS
Google Scholar
Stark, S. et al. Decreased soil microbial nitrogen under vegetation ‘shrubification’ in the subarctic forest–tundra ecotone: the potential role of increasing nutrient competition between plants and soil microorganisms. Ecosystems https://doi.org/10.1007/s10021-023-00847-z (2023).
Daebeler, A. et al. Interactions between thaumarchaea, nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 8, 2397–2410 (2014).
Article
CAS
Google Scholar
Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).
Article
CAS
Google Scholar
Chen, W. et al. Diel and seasonal dynamics of ecosystem‐scale methane flux and their determinants in an alpine meadow. J. Geophys. Res. Biogeosci. 124, 1731–1745 (2019).
Article
CAS
Google Scholar
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).
Article
CAS
Google Scholar
Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–319 (2016).
Article
CAS
Google Scholar
Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 45509 (2011).
Article
Google Scholar
Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).
Article
Google Scholar
Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R. & Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences 9, 3305–3322 (2012).
Article
CAS
Google Scholar
Gaumont‐Guay, D. et al. Soil CO2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance. Glob. Change Biol. 15, 1302–1319 (2009).
Article
Google Scholar
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).
Article
Google Scholar
Eckhardt, T. et al. Partitioning net ecosystem exchange of CO2 on the pedon scale in the Lena River Delta, Siberia. Biogeosciences 16, 1543–1562 (2019).
Article
CAS
Google Scholar
Patrignani, A. & Ochsner, T. E. Canopeo: a powerful new tool for measuring fractional green canopy cover. Agron. J. 107, 2312–2320 (2015).
Article
CAS
Google Scholar
Okruszko, H. in Organic Soils and Peat Materials for Sustainable Agriculture (eds Léon-Etienne, P. & Ilnicki, P.) 47–54 (CRC, 2003).
Walthert, L. et al. Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl. J. Plant Nutr. Soil Sci. 173, 207–216 (2010).
Article
CAS
Google Scholar
Marushchak, M. E. et al. Thawing Yedoma permafrost is a neglected nitrous oxide source. Nat. Commun. 12, 7107 (2021).
Article
CAS
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (The R Foundation for Statistical Computing, 2022).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Article
Google Scholar
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
Tate, K. R. Soil methane oxidation and land-use change—from process to mitigation. Soil Biol. Biochem. 80, 260–272 (2015).
Article
CAS
Google Scholar
Curry, C. L. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6, 2355–2367 (2009).
Article
CAS
Google Scholar
Knox, S. H. et al. Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Glob. Change Biol. 27, 3582–3604 (2021).
Article
CAS
Google Scholar
Ogle, D. H., Doll, J. C., Wheeler, P. & Dinno, A. FSA: Simple fisheries stock assessment methods. R package version 0.9.4 (2023).
Graves, S., Piepho, H.-P. & Selzer, L. multcompView: visualizations of paired comparisons. R package version 0.1-8 (2019).
Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).
Article
Google Scholar
Voigt, C. et al. Atmospheric methane consumption by upland soils in the Western Canadian Arctic and Finnish Lapland (2018–2021). PANGAEA https://doi.org/10.1594/PANGAEA.953120 (2023).
Nesic, Z. Voigt2023_CH4_uptake (Version 1.0). GitHub https://github.com/znesic/Voigt2023_CH4_uptake (2023).
Voigt, C. & Kou, D. R-code for random forest models related to article ‘Arctic soil methane sink increases with drier conditions and higher ecosystem respiration’. Zenodo https://doi.org/10.5281/zenodo.8152386 (2023).