Connect with us

Climate

China’s bulk material loops can be closed but deep decarbonization requires demand reduction

Published

on


  • Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Net Zero by 2050: A Roadmap for the Global Energy Sector (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050

  • Global Resources Outlook 2019: Natural Resources for the Future we Want (UNEP, 2019); https://wedocs.unep.org/handle/20.500.11822/27517

  • Cao, Z. et al. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11, 3777 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Creutzig, F. et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 12, 36–46 (2022).

    Article 

    Google Scholar
     

  • Adoption of the Paris Agreement by the President: Paris Climate Change Conference (UNFCCC, 2019); http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

  • Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article 

    Google Scholar
     

  • Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article 

    Google Scholar
     

  • IPCC. Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

  • Habert, G. et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 1, 559–573 (2020).

    Article 

    Google Scholar
     

  • Watari, T., Cao, Z., Hata, S. & Nansai, K. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 13, 4158 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Habert, G., Billard, C., Rossi, P., Chen, C. & Roussel, N. Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 40, 820–826 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pauliuk, S. et al. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Allwood, J. M. Unrealistic techno-optimisim is holding back progress on resource efficiency. Nat. Mater. 17, 1050–1053 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Watari, T., Hata, S., Nakajima, K. & Nansai, K. Limited quantity and quality of steel supply in a zero-emission future. Nat. Sustain. 6, 336–343 (2023).

    Article 

    Google Scholar
     

  • Allwood, J. M. in Handbook of Recycling (eds Worrell, E. & Reuter, M. A.) 445–477 (Elsevier, 2014).

  • Material Efficiency in Clean Energy Transitions (IEA, 2019); https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions

  • Cao, Z., Masanet, E., Tiwari, A. & Akolawala, S. Decarbonizing Concrete: Deep Decarbonization Pathways for the Cement and Concrete Cycle in the United States, India and China (Industrial Sustainability Analysis Laboratory, 2021).

  • Wang, P. et al. Efficiency stagnation in global steel production urges joint supply-and-demand-side mitigation efforts. Nat. Commun. 12, 2066 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12, 6126 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Creutzig, F. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 752–943 (Cambridge Univ. Press, 2022).

  • Cement Statistics and Information (USGS, 2021); https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information

  • Primary Aluminium Production (International Aluminium Institute, 2022); https://international-aluminium.org/statistics/primary-aluminium-production

  • World Steel in Figures 2022 (World Steel Association, 2022); https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022

  • Plastics—the Facts 2021. An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2022); https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021

  • An Energy Sector Roadmap to Carbon Neutrality in China (IEA, 2021); https://www.iea.org/events/an-energy-sector-roadmap-to-carbon-neutrality-in-china

  • Pauliuk, S., Wang, T. & Müller, D. B. Steel all over the world: estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 71, 22–30 (2013).

    Article 

    Google Scholar
     

  • Song, L. et al. Mapping provincial steel stocks and flows in China: 1978–2050. J. Clean. Prod. 262, 121393 (2020).

    Article 

    Google Scholar
     

  • Song, L. et al. China material stocks and flows account for 1978–2018. Sci. Data 8, 303 (2021).

    Article 

    Google Scholar
     

  • Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations (IEA, 2017); https://www.iea.org/reports/energy-technology-perspectives-2017

  • Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 153, 104553 (2020).

    Article 

    Google Scholar
     

  • van Ewijk, S. et al. Ten Insights From Industrial Ecology for the Circular Economy (ISIE, 2023).

  • Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD, 2019); https://doi.org/10.1787/9789264307452-en

  • Bleischwitz, R., Nechifor, V., Winning, M., Huang, B. & Geng, Y. Extrapolation or saturation—revisiting growth patterns, development stages and decoupling. Glob. Environ. Change 48, 86–96 (2018).

    Article 

    Google Scholar
     

  • Building a Greener Future: How China can Reach its Dual Climate Goals (Boston Consulting Group, 2021); https://web-assets.bcg.com/ff/a6/c514e7314190b5cb27b1383fae1b/bcg-x-cdrf-how-china-can-reach-its-dual-climate-goals-mar-2021-en.pdf

  • Corvellec, H., Stowell, A. F. & Johansson, N. Critiques of the circular economy. J. Ind. Ecol. 26, 421–432 (2021).

    Article 

    Google Scholar
     

  • Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).

    Article 
    CAS 

    Google Scholar
     

  • van Ewijk, S., Stegemann, J. A. & Ekins, P. Limited climate benefits of global recycling of pulp and paper. Nat. Sustain. 4, 180–187 (2021).

  • Westbroek, C. D., Bitting, J., Craglia, M., Azevedo, J. M. & Cullen, J. M. Global material flow analysis of glass: from raw materials to end of life. J. Ind. Ecol. 25, 333–343 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Allwood, J. M. et al. Sustainable Materials: With Both Eyes Open (UIT Cambridge, 2012).

  • The 14th Five-Year Plan for Circular Economy Development (National Development and Reform Commission, 2021); https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/t20210707_1285527.html?code=&state=123

  • Song, L., Cao, Z. & Chen, W.-Q. Dataset and code for bulk materials flows and GHG emission reduction potential in China. figshare https://doi.org/10.6084/m9.figshare.21837195 (2023).

  • Fishman, T., Schandl, H. & Tanikawa, H. Stochastic analysis and forecasts of the patterns of speed, acceleration and levels of material stock accumulation in society. Environ. Sci. Technol. 50, 3729–3737 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Z., Shen, L., Lovik, A. N., Muller, D. B. & Liu, G. Elaborating the history of our cementing societies: an in-use stock perspective. Environ. Sci. Technol. 51, 11468–11475 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 7, 83 (2020).

    Article 

    Google Scholar
     

  • Wiedenhofer, D. et al. Prospects for a saturation of humanity’s resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Glob. Environ. Change 71, 102410 (2021).

    Article 

    Google Scholar
     

  • Müller, D. B., Wang, T. & Duval, B. Patterns of iron use in societal evolution. Environ. Sci. Technol. 45, 182–188 (2011).

    Article 

    Google Scholar
     

  • Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The steel scrap age. Environ. Sci. Technol. 47, 3448–3454 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wolfram, P., Tu, Q., Heeren, N., Pauliuk, S. & Hertwich, E. G. Material efficiency and climate change mitigation of passenger vehicles. J. Ind. Ecol. 25, 494–510 (2021).

    Article 

    Google Scholar
     



  • Source link

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved