Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015).
Article
CAS
Google Scholar
Net Zero by 2050: A Roadmap for the Global Energy Sector (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050
Global Resources Outlook 2019: Natural Resources for the Future we Want (UNEP, 2019); https://wedocs.unep.org/handle/20.500.11822/27517
Cao, Z. et al. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11, 3777 (2020).
Article
CAS
Google Scholar
Creutzig, F. et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 12, 36–46 (2022).
Article
Google Scholar
Adoption of the Paris Agreement by the President: Paris Climate Change Conference (UNFCCC, 2019); http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).
Article
Google Scholar
Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).
Article
Google Scholar
IPCC. Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).
Habert, G. et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 1, 559–573 (2020).
Article
Google Scholar
Watari, T., Cao, Z., Hata, S. & Nansai, K. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 13, 4158 (2022).
Article
CAS
Google Scholar
Habert, G., Billard, C., Rossi, P., Chen, C. & Roussel, N. Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 40, 820–826 (2010).
Article
CAS
Google Scholar
Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).
Article
CAS
Google Scholar
Pauliuk, S. et al. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).
Article
CAS
Google Scholar
Allwood, J. M. Unrealistic techno-optimisim is holding back progress on resource efficiency. Nat. Mater. 17, 1050–1053 (2018).
Article
CAS
Google Scholar
Watari, T., Hata, S., Nakajima, K. & Nansai, K. Limited quantity and quality of steel supply in a zero-emission future. Nat. Sustain. 6, 336–343 (2023).
Article
Google Scholar
Allwood, J. M. in Handbook of Recycling (eds Worrell, E. & Reuter, M. A.) 445–477 (Elsevier, 2014).
Material Efficiency in Clean Energy Transitions (IEA, 2019); https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions
Cao, Z., Masanet, E., Tiwari, A. & Akolawala, S. Decarbonizing Concrete: Deep Decarbonization Pathways for the Cement and Concrete Cycle in the United States, India and China (Industrial Sustainability Analysis Laboratory, 2021).
Wang, P. et al. Efficiency stagnation in global steel production urges joint supply-and-demand-side mitigation efforts. Nat. Commun. 12, 2066 (2021).
Article
CAS
Google Scholar
Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12, 6126 (2021).
Article
CAS
Google Scholar
Creutzig, F. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 752–943 (Cambridge Univ. Press, 2022).
Cement Statistics and Information (USGS, 2021); https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information
Primary Aluminium Production (International Aluminium Institute, 2022); https://international-aluminium.org/statistics/primary-aluminium-production
World Steel in Figures 2022 (World Steel Association, 2022); https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022
Plastics—the Facts 2021. An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2022); https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021
An Energy Sector Roadmap to Carbon Neutrality in China (IEA, 2021); https://www.iea.org/events/an-energy-sector-roadmap-to-carbon-neutrality-in-china
Pauliuk, S., Wang, T. & Müller, D. B. Steel all over the world: estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 71, 22–30 (2013).
Article
Google Scholar
Song, L. et al. Mapping provincial steel stocks and flows in China: 1978–2050. J. Clean. Prod. 262, 121393 (2020).
Article
Google Scholar
Song, L. et al. China material stocks and flows account for 1978–2018. Sci. Data 8, 303 (2021).
Article
Google Scholar
Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations (IEA, 2017); https://www.iea.org/reports/energy-technology-perspectives-2017
Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 153, 104553 (2020).
Article
Google Scholar
van Ewijk, S. et al. Ten Insights From Industrial Ecology for the Circular Economy (ISIE, 2023).
Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD, 2019); https://doi.org/10.1787/9789264307452-en
Bleischwitz, R., Nechifor, V., Winning, M., Huang, B. & Geng, Y. Extrapolation or saturation—revisiting growth patterns, development stages and decoupling. Glob. Environ. Change 48, 86–96 (2018).
Article
Google Scholar
Building a Greener Future: How China can Reach its Dual Climate Goals (Boston Consulting Group, 2021); https://web-assets.bcg.com/ff/a6/c514e7314190b5cb27b1383fae1b/bcg-x-cdrf-how-china-can-reach-its-dual-climate-goals-mar-2021-en.pdf
Corvellec, H., Stowell, A. F. & Johansson, N. Critiques of the circular economy. J. Ind. Ecol. 26, 421–432 (2021).
Article
Google Scholar
Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).
Article
CAS
Google Scholar
van Ewijk, S., Stegemann, J. A. & Ekins, P. Limited climate benefits of global recycling of pulp and paper. Nat. Sustain. 4, 180–187 (2021).
Westbroek, C. D., Bitting, J., Craglia, M., Azevedo, J. M. & Cullen, J. M. Global material flow analysis of glass: from raw materials to end of life. J. Ind. Ecol. 25, 333–343 (2021).
Article
CAS
Google Scholar
Allwood, J. M. et al. Sustainable Materials: With Both Eyes Open (UIT Cambridge, 2012).
The 14th Five-Year Plan for Circular Economy Development (National Development and Reform Commission, 2021); https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/t20210707_1285527.html?code=&state=123
Song, L., Cao, Z. & Chen, W.-Q. Dataset and code for bulk materials flows and GHG emission reduction potential in China. figshare https://doi.org/10.6084/m9.figshare.21837195 (2023).
Fishman, T., Schandl, H. & Tanikawa, H. Stochastic analysis and forecasts of the patterns of speed, acceleration and levels of material stock accumulation in society. Environ. Sci. Technol. 50, 3729–3737 (2016).
Article
CAS
Google Scholar
Cao, Z., Shen, L., Lovik, A. N., Muller, D. B. & Liu, G. Elaborating the history of our cementing societies: an in-use stock perspective. Environ. Sci. Technol. 51, 11468–11475 (2017).
Article
CAS
Google Scholar
Chen, Y. et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 7, 83 (2020).
Article
Google Scholar
Wiedenhofer, D. et al. Prospects for a saturation of humanity’s resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Glob. Environ. Change 71, 102410 (2021).
Article
Google Scholar
Müller, D. B., Wang, T. & Duval, B. Patterns of iron use in societal evolution. Environ. Sci. Technol. 45, 182–188 (2011).
Article
Google Scholar
Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The steel scrap age. Environ. Sci. Technol. 47, 3448–3454 (2013).
Article
CAS
Google Scholar
Wolfram, P., Tu, Q., Heeren, N., Pauliuk, S. & Hertwich, E. G. Material efficiency and climate change mitigation of passenger vehicles. J. Ind. Ecol. 25, 494–510 (2021).
Article
Google Scholar