Pörtner, H. O. et al. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. (IPBES Secretariat, 2021).
Martin, R., da Silva, C. R. B., Moore, M. P. & Diamond, S. E. When will a changing climate outpace adaptive evolution? Wiley Interdiscip. Rev. Clim. (in the press).
Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. USA 118, e2101458118 (2021).
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Article
Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Freeman, B. G., Song, Y., Feeley, K. J. & Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 24, 1697–1708 (2021).
Article
Google Scholar
Feeley, K. J., Rehm, E. & Stroud, J. T. There are many barriers to species migrations. Front. Biogeogr. 6, fb_22006 (2014).
Article
Google Scholar
Mamantov, M. A., Gibson‐Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate‐driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).
Article
Google Scholar
Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range‐edge populations. Ecol. Evol. 5, 4315–4326 (2015).
Article
Google Scholar
Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate‐induced range shifts. Ecography 43, 1571–1590 (2020).
Article
Google Scholar
Jacobsen, D. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18, 211–218 (2020).
Article
Google Scholar
Altshuler, D. L. & Dudley, R. Adaptations to life at high elevation: an introduction to the symposium. Integr. Compar. Biol. 46, 3–4 (2006a).
Article
Google Scholar
Altshuler, D. L. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Compar. Biol. 46, 62–71 (2006b).
Article
Google Scholar
Reinhold, K. Energetically costly behaviour and the evolution of resting metabolic rate in insects. Funct. Ecol. 13, 217–224 (1999).
Article
Google Scholar
Videler, J. J. Avian Flight (Oxford Univ. Press, 2006).
Harrison, J. F., Greenlee, K. J. & Verberk, W. C. Functional hypoxia in insects: definition, assessment, and consequences for physiology, ecology, and evolution. Annu. Rev. Entomol. 63, 303–325 (2018).
Article
CAS
Google Scholar
Neate-Clegg, M. H. & Tingley, M. W. Building a mechanistic understanding of climate-driven elevational shifts in birds. PLOS Clim. 2, e0000174 (2023).
Article
Google Scholar
Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).
Article
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
Article
Google Scholar
Lack, J. B., Monette, M. J., Johanning, E. J., Sprengelmeyer, Q. D. & Pool, J. E. Decanalization of wing development accompanied the evolution of large wings in high-altitude Drosophila. Proc. Natl Acad. Sci. USA 113, 1014–1019 (2016).
Moore, M. P. & Khan, F. Relatively large wings facilitate life at higher elevations among Nearctic dragonflies. J. Anim. Ecol. 92, 1613–1621 (2023).
Article
Google Scholar
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).
Article
CAS
Google Scholar
White, C. R. & Kearney, M. R. Determinants of inter-specific variation in basal metabolic rate. J. Comp. Phys. B 183, 1–26 (2013).
Article
CAS
Google Scholar
Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207–230 (1997).
Article
CAS
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2020).
Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).
Article
CAS
Google Scholar
Comte L., et al. BioShifts: a global geodatabase of climate-induced species redistribution over land and sea. Figshare https://doi.org/10.6084/m9.figshare.7413365 (2020).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Article
Google Scholar
Moore, M. P. Data from: upslope migration is slower in species with high physiological demands. Dryad Digital Repository https://doi.org/10.5061/dryad.kh18932bs (2023).