Connect with us

Climate

Widespread deoxygenation in warming rivers

Published

on


  • Ficklin, D. L. et al. Rethinking river water temperature in a changing, human-dominated world. Nat. Water 1, 125–128 (2023).

    Article 

    Google Scholar
     

  • Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nat. Geosci. 5, 715–718 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sundby, B. et al. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment–water interface. Geochim. Cosmochim. Acta 50, 1281–1288 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article 

    Google Scholar
     

  • Blaszczak, J. R. et al. Extent, patterns, and drivers of hypoxia in the world’s streams and rivers. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10297 (2022).

    Article 

    Google Scholar
     

  • Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).

    Article 

    Google Scholar
     

  • Bernhardt, E. S. et al. Light and flow regimes regulate the metabolism of rivers. Proc. Natl Acad. Sci. USA 119, e2121976119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Helton, A. M., Poole, G. C., Payn, R. A., Izurieta, C. & Stanford, J. A. Scaling flow path processes to fluvial landscapes: an integrated field and model assessment of temperature and dissolved oxygen dynamics in a river–floodplain–aquifer system. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002025 (2012).

  • Piatka, D. R. et al. Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: a review. Earth Sci. Rev. 220, 103729 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Utz, R. M., Bookout, B. J. & Kaushal, S. S. Influence of temperature, precipitation, and cloud cover on diel dissolved oxygen ranges among headwater streams with variable watershed size and land use attributes. Aquat. Sci. 82, 82 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hancke, K. & Glud, R. N. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquat. Microb. Ecol. 37, 265–281 (2004).

    Article 

    Google Scholar
     

  • Girard, J. Principles of Environmental Chemistry (Jones & Bartlett Publishers, 2013).

  • Blaszczak, J. R., Delesantro, J. M., Urban, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Carter, A. M., Blaszczak, J. R., Heffernan, J. B. & Bernhardt, E. S. Hypoxia dynamics and spatial distribution in a low gradient river. Limnol. Oceanogr. 66, 2251–2265 (2021).

    Article 

    Google Scholar
     

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Guo, D. et al. A data-based predictive model for spatiotemporal variability in stream water quality. Hydrol. Earth Syst. Sci. 24, 827–847 (2020).

    Article 

    Google Scholar
     

  • Zhi, W., Ouyang, W., Shen, C. & Li, L. Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers. Nat. Water 1, 249–260 (2023).

    Article 

    Google Scholar
     

  • Thrasher, B. et al. NASA global daily downscaled projections, CMIP6. Sci. Data https://doi.org/10.1038/s41597-022-01393-4 (2022)

  • Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).

    Article 

    Google Scholar
     

  • Climate at a Glance: National Mapping (NOAA National Centers for Environmental Information, accessed 13 August 2022); https://www.ncei.noaa.gov/cag/

  • van der Schrier, G., van den Besselaar, E. J. M., Klein Tank, A. M. G. & Verver, G. Monitoring European average temperature based on the E-OBS gridded data set. J. Geophys. Res. Atmos. 118, 5120–5135 (2013).

    Article 

    Google Scholar
     

  • Thompson, A. M., Kim, K. & Vandermuss, A. J. Thermal characteristics of stormwater runoff from asphalt and sod surfaces 1. J. Am. Water Resour. Assoc. 44, 1325–1336 (2008).

    Article 

    Google Scholar
     

  • Kinouchi, T., Yagi, H. & Miyamoto, M. Increase in stream temperature related to anthropogenic heat input from urban wastewater. J. Hydrol. 335, 78–88 (2007).

    Article 

    Google Scholar
     

  • Adeola Fashae, O., Abiola Ayorinde, H., Oludapo Olusola, A. & Oluseyi Obateru, R. Landuse and surface water quality in an emerging urban city. Appl. Water Sci. 9, 25 (2019).

    Article 

    Google Scholar
     

  • Daniel, M. H. B. et al. Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River Basin. Water Air Soil Pollut. 136, 189–206 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Welker, T. L., Overturf, K. & Abernathy, J. Effect of aeration and oxygenation on growth and survival of rainbow trout in a commercial serial-pass, flow-through raceway system. Aquac. Rep. 14, 100194 (2019).

    Article 

    Google Scholar
     

  • Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ice, G. & Sugden, B. Summer dissolved oxygen concentrations in forested streams of northern Louisiana. South. J. Appl. Forestry 27, 92–99 (2003).

    Article 

    Google Scholar
     

  • Whitworth, K. L., Baldwin, D. S. & Kerr, J. L. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J. Hydrol. 450-451, 190–198 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Calleja, M. L., Al-Otaibi, N. & Morán, X. A. G. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci. Rep. 9, 4690 (2019).

    Article 

    Google Scholar
     

  • Zhi, W. et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 55, 2357–2368 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. & Wong, D. W. S. Effects of DEM sources on hydrologic applications. Comput. Environ. Urban Syst. 34, 251–261 (2010).

    Article 

    Google Scholar
     

  • Preece, R. M. & Jones, H. A. The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. River Res. Appl. 18, 397–414 (2002).

    Article 

    Google Scholar
     

  • Zaidel, P. A. et al. Impacts of small dams on stream temperature. Ecol. Indic. 120, 106878 (2021).

    Article 

    Google Scholar
     

  • Zaidel, P. Impacts of Small, Surface-Release Dams on Stream Temperature and Dissolved Oxygen in Massachusetts. MSc thesis, Univ. Massachusetts Amherst (2018).

  • Hartmann, J., Lauerwald, R. & Moosdorf, N. GLORICH-Global river chemistry database. PANGAEA https://doi.org/10.1594/PANGAEA.902360 (2019).

  • Diamond, J. S. et al. Hypoxia is common in temperate headwaters and driven by hydrological extremes. Ecol. Indic. 147, 109987 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 461–466 (2010).

    Article 

    Google Scholar
     

  • Jastram, J. D. & Rice, K. C. Air- and Stream-Water-Temperature Trends in the Chesapeake Bay Region, 1960–2014 (US Department of the Interior, US Geological Survey, 2015).

  • Michel, A., Brauchli, T., Lehning, M., Schaefli, B. & Huwald, H. Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour. Hydrol. Earth Syst. Sci. 24, 115–142 (2020).

    Article 

    Google Scholar
     

  • IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • Bulgin, C. E., Merchant, C. J. & Ferreira, D. Tendencies, variability and persistence of sea surface temperature anomalies. Sci. Rep. 10, 7986 (2020).

    Article 
    CAS 

    Google Scholar
     

  • O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10,773–10,781 (2015).


    Google Scholar
     

  • Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change https://doi.org/10.1007/s10584-021-03085-1 (2021).

  • Xie, C., Zhang, X., Zhuang, L., Zhu, R. & Guo, J. Analysis of surface temperature variation of lakes in China using MODIS land surface temperature data. Sci. Rep. 12, 2415 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bograd, S. J. et al. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35, L12607 (2008).

    Article 

    Google Scholar
     

  • Pierce, S. D., Barth, J. A., Shearman, R. K. & Erofeev, A. Y. Declining oxygen in the Northeast Pacific. J. Phys. Oceanogr. 42, 495–501 (2012).

    Article 

    Google Scholar
     

  • Li, L. et al. Climate controls on river chemistry. Earths Future 10, e2021EF002603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Klingler, C., Schulz, K. & Herrnegger, M. LamaH-CE: LArge-SaMple DAta for hydrology and environmental sciences for Central Europe. Earth Syst. Sci. Data 13, 4529–4565 (2021).

    Article 

    Google Scholar
     

  • Falcone, J. A. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow (US Geological Survey, 2011).

  • Fang, K., Kifer, D., Lawson, K., Feng, D. & Shen, C. The data synergy effects of time‐series deep learning models in hydrology. Water Resour. Res. https://doi.org/10.1029/2021WR029583 (2022).

    Article 

    Google Scholar
     

  • Moore, R. B. et al. User’s Guide for the National Hydrography Dataset plus (NHDPlus) High Resolution Open-File Report (US Geological Survey, 2019).

  • Spahr, N. E., Dubrovsky, N. M., Gronberg, J. M., Franke, O. & Wolock, D. M. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990–2006 (US Geological Survey, 2010).

  • Mueller, D. K. & Spahr, N. E. Nutrients in Streams and Rivers Across the Nation—1992–2001 Report No. 2006-5107 (US Geological Survey, 2006).

  • Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. T. ASABE 58, 1763–1785 (2015).

    Article 

    Google Scholar
     

  • Wei, Z. DeepWater: deep learning for water quality. Zenodo https://doi.org/10.5281/zenodo.8199995 (2023)

  • Feng, D., Fang, K. & Shen, C. Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales. Water Resour. Res. https://doi.org/10.1029/2019WR026793 (2020).

    Article 

    Google Scholar
     

  • Kratzert, F., Klotz, D., Brenner, C., Schulz, K. & Herrnegger, M. Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 22, 6005–6022 (2018).

    Article 

    Google Scholar
     

  • Fang, K., Shen, C., Kifer, D. & Yang, X. Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network. Geophys. Res. Lett. 44, 11,030–11,039 (2017).

    Article 

    Google Scholar
     

  • Wang, Y.-H., Gupta, H. V., Zeng, X. & Niu, G.-Y. Exploring the potential of long short-term memory networks for improving understanding of continental- and regional-scale snowpack dynamics. Water Resour. Res. https://doi.org/10.1029/2021WR031033 (2022).

    Article 

    Google Scholar
     

  • Graf, R., Zhu, S. & Sivakumar, B. Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. J. Hydrol. 578, 124115 (2019).

    Article 

    Google Scholar
     

  • Gallice, A., Schaefli, B., Lehning, M., Parlange, M. B. & Huwald, H. Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model. Hydrol. Earth Syst. Sci. 19, 3727–3753 (2015).

    Article 

    Google Scholar
     

  • Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P. & Malcolm, I. A. A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Sci. Total Environ. 612, 1543–1558 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, S., Nyarko, E. K. & Hadzima-Nyarko, M. Modelling daily water temperature from air temperature for the Missouri River. PeerJ 6, e4894 (2018).

    Article 

    Google Scholar
     

  • Zhu, S. & Heddam, S. Prediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN). Water Qual. Res. J. 55, 106–118 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X., Shen, J. & Du, J. A machine-learning-based model for water quality in coastal waters, taking dissolved oxygen and hypoxia in Chesapeake Bay as an example. Water Resour. Res. https://doi.org/10.1029/2020wr027227 (2020)

  • Liu, X. et al. Estimation of the key water quality parameters in the surface water, middle of northeast China, based on Gaussian process regression. Remote Sens. 14, 6323 (2022).

    Article 

    Google Scholar
     

  • Appling, A. P., Hall, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging long time series for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved