Connect with us

Climate

Marine biodiversity exposed to prolonged and intense subsurface heatwaves

Published

on


  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article 

    Google Scholar
     

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article 

    Google Scholar
     

  • Tanaka, K. R. & van Houtan, K. S. The recent normalization of historical marine heat extremes. PLOS Clim. 1, e0000007 (2022).

    Article 

    Google Scholar
     

  • Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    Article 

    Google Scholar
     

  • Oliver, E. C. J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659 (2019).

    Article 

    Google Scholar
     

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 

    Google Scholar
     

  • Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).

    Article 

    Google Scholar
     

  • Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oliver, E. C. J. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).

    Article 

    Google Scholar
     

  • Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).

    Article 

    Google Scholar
     

  • Elzahaby, Y. & Schaeffer, A. Observational insight into the subsurface anomalies of marine heatwaves. Front Mar. Sci. 6, 745 (2019).

    Article 

    Google Scholar
     

  • Elzahaby, Y., Schaeffer, A., Roughan, M. & Delaux, S. Oceanic circulation drives the deepest and longest marine heatwaves in the East Australian Current system. Geophys. Res. Lett. 48, e2021GL094785 (2021).

    Article 

    Google Scholar
     

  • Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).

    Article 

    Google Scholar
     

  • Ryan, S. et al. Depth structure of Ningaloo Niño/Niña events and associated drivers. J. Clim. 34, 1767–1788 (2021).

    Article 

    Google Scholar
     

  • Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130 (2018).

    Article 

    Google Scholar
     

  • Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).

    Article 

    Google Scholar
     

  • Hu, S. et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 16, 104024 (2021).

    Article 

    Google Scholar
     

  • Großelindemann, H., Ryan, S., Ummenhofer, C. C., Martin, T. & Biastoch, A. Marine heatwaves and their depth structures on the northeast U.S. continental shelf. Front. Clim. 4, 857937 (2022).

    Article 

    Google Scholar
     

  • Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).

    Article 

    Google Scholar
     

  • Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).

    Article 

    Google Scholar
     

  • Global Ocean Physics Reanalysis (EU Copernicus Marine Service Information (CMEMS) and Marine Data Store (MDS), accessed 13 May 2021); https://doi.org/10.48670/moi-00021

  • Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (2019). Retrieved from https://www.aquamaps.org

  • Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California Current system: early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).

    Article 

    Google Scholar
     

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 

    Google Scholar
     

  • Holte, J., Talley, L. D., Gilson, J. & Roemmich, D. An Argo mixed layer climatology and database. Geophys. Res. Lett. 44, 5618–5626 (2017).

    Article 

    Google Scholar
     

  • Imawaki, S. et al. in Observing the Oceans in the 21st Century (eds Koblinsky, C. & Smith, N.) 285–306 (Godae Project Office, Bureau of Meteorology, 2001).

  • Chaikin, S., Dubiner, S. & Belmaker, J. Cold-water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 31, 75–88 (2022).

    Article 

    Google Scholar
     

  • Cartes, J. E. et al. Changes in deep-sea fish and crustacean communities at 1000–2200m in the western Mediterranean after 25 years: relation to hydro-climatic conditions. J. Mar. Syst. 143, 138–153 (2015).

  • Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian basin of the Arctic Ocean. Science 356, 285–291 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Woodgate, R. A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 160, 124–154 (2018).

    Article 

    Google Scholar
     

  • Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Strass, V. H. et al. Multidecadal warming and density loss in the deep Weddell Sea, Antarctica. J. Clim. 33, 9863–9881 (2020).

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    Article 

    Google Scholar
     

  • sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).

    Article 

    Google Scholar
     

  • Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of eastern upwelling systems on marine heatwaves occurrence. Glob. Planet. Change 196, 103379 (2021).

    Article 

    Google Scholar
     

  • Pinault, J. L. A review of the role of the oceanic Rossby waves in climate variability. J. Mar. Sci. Eng. 10, 493 (2022).

    Article 

    Google Scholar
     

  • Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Straub, S. C. et al. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).

    Article 

    Google Scholar
     

  • Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).

    Article 

    Google Scholar
     

  • Haguenauer, A. et al. Deep heat: a comparison of water temperature, anemone bleaching, anemonefish density and reproduction between shallow and mesophotic reefs. Fishes 6, 37 (2021).

    Article 

    Google Scholar
     

  • Bavestrello, G. et al. The red coral populations of the gulfs of Naples and Salerno: human impact and deep mass mortalities. Ital. J. Zool. 81, 552–563 (2014).

  • Perkins, N. R. et al. Bleaching in sponges on temperate mesophotic reefs observed following marine heatwave events. Clim. Change Ecol. 3, 100046 (2022).

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).

    Article 

    Google Scholar
     

  • Wernberg, T. in Ecosystem Collapse and Climate Change (eds Canadell, J. G. & Jackson, R. B.) 325–343 (Springer Nature, 2021).

  • Santana-Falcón, Y. & Séférian, R. Climate change impacts the vertical structure of marine ecosystem thermal ranges. Nat. Clim. Change 12, 935–942 (2022).

    Article 

    Google Scholar
     

  • Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    Article 

    Google Scholar
     

  • Gouvêa, L. P. et al. Phenotypic plasticity in sargassum forests may not counteract projected biomass losses along a broad latitudinal gradient. Ecosystems 26, 29–41 (2022).

    Article 

    Google Scholar
     

  • Schubert, N., Santos, R. & Silva, J. Living in a fluctuating environment increases tolerance to marine heatwaves in the free-living coralline alga Phymatolithon lusitanicum. Front. Mar. Sci. 8, 791422 (2021).

    Article 

    Google Scholar
     

  • Coleman, M. A. & Wernberg, T. The silver lining of extreme events. Trends Ecol. Evol. 35, 1065–1067 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pershing, A. J. et al. Evidence for adaptation from the 2016 marine heatwave in the northwest Atlantic Ocean. Oceanography 31, 152–161 (2018).

  • Seuront, L. et al. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).

  • Dalton, S. J. et al. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Sci. Total Environ. 715, 136951 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 15050 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea. Ecol. Lett. 7, 821–828 (2004).

    Article 

    Google Scholar
     

  • Ashford, O. S. et al. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proc. R. Soc. B 285, 1–10 (2018).

  • Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. 5, 4 (2017).

    Article 

    Google Scholar
     

  • Shi, Z., Assis, J. & Costello, M. J. in Imperiled: The Encyclopedia of Conservation (eds DellaSala, D. A. & Goldstein, M. I.) 887–894 (Elsevier, 2022).

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Gerringer, M. E. et al. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front. Zool. 18, 16 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Szekely, T., Gourrion, J., Pouliquen, S. & Reverdin, G. CORA, Coriolis Ocean Dataset for Reanalysis (SEANOE, 2023); https://doi.org/10.17882/46219

  • Verezemskaya, P. et al. Assessing eddying (1/12°) ocean reanalysis GLORYS12 using the 14-yr instrumental record from 59.5° N section in the Atlantic. J. Geophys. Res. Oceans 126, e2020JC016317 (2021).

    Article 

    Google Scholar
     

  • Artana, C. et al. The Malvinas Current at the confluence with the Brazil Current: inferences from 25 years of Mercator Ocean reanalysis. J. Geophys. Res. Oceans 124, 7178–7200 (2019).

    Article 

    Google Scholar
     

  • Poli, L. et al. Anatomy of subinertial waves along the Patagonian shelf break in a 1/12° global operational model. J. Geophys. Res. Oceans 125, e2020JC016549 (2020).

    Article 

    Google Scholar
     

  • Lellouche, J.-M. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).

    Article 

    Google Scholar
     

  • Drévillon, M. et al. Quality Information Document for Global Ocean Reanalysis Products: GLOBAL_REANALYSIS_PHY_001_030 (EU Copernicus Marine Service, 2021); https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf

  • Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article 

    Google Scholar
     

  • McPhaden, M. J. et al. The global tropical moored buoy array. In Proc. OceanObs’09: Sustained Ocean Observations and Information for Society 668–682 (European Space Agency, 2010); https://www.aoml.noaa.gov/phod/docs/McPhaden_TheGlobalTropical.pdf

  • Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

  • Bondaruk, B., Roberts, S. A. & Robertson, C. Assessing the state of the art in discrete global grid systems: OGC criteria and present functionality. Geomatica 74, 9–30 (2020).

    Article 

    Google Scholar
     

  • Gouhier, T. C. & Guichard, F. Synchrony: quantifying variability in space and time. Methods Ecol. Evol. 5, 524–533 (2014).

    Article 

    Google Scholar
     

  • Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).

    Article 

    Google Scholar
     

  • Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    Article 

    Google Scholar
     

  • Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).

    Article 
    CAS 

    Google Scholar
     

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org

  • Fragkopoulou, E. et al. Marine biodiversity exposed to prolonged and intense subsurface heatwaves. Figshare https://doi.org/10.6084/m9.figshare.19174985 (2023).



  • Source link

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved