Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Article
Google Scholar
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Article
Google Scholar
Tanaka, K. R. & van Houtan, K. S. The recent normalization of historical marine heat extremes. PLOS Clim. 1, e0000007 (2022).
Article
Google Scholar
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
Article
Google Scholar
Oliver, E. C. J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659 (2019).
Article
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Article
Google Scholar
Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).
Article
Google Scholar
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).
Article
CAS
Google Scholar
Oliver, E. C. J. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).
Article
Google Scholar
Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).
Article
Google Scholar
Elzahaby, Y. & Schaeffer, A. Observational insight into the subsurface anomalies of marine heatwaves. Front Mar. Sci. 6, 745 (2019).
Article
Google Scholar
Elzahaby, Y., Schaeffer, A., Roughan, M. & Delaux, S. Oceanic circulation drives the deepest and longest marine heatwaves in the East Australian Current system. Geophys. Res. Lett. 48, e2021GL094785 (2021).
Article
Google Scholar
Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).
Article
Google Scholar
Ryan, S. et al. Depth structure of Ningaloo Niño/Niña events and associated drivers. J. Clim. 34, 1767–1788 (2021).
Article
Google Scholar
Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130 (2018).
Article
Google Scholar
Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).
Article
Google Scholar
Hu, S. et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 16, 104024 (2021).
Article
Google Scholar
Großelindemann, H., Ryan, S., Ummenhofer, C. C., Martin, T. & Biastoch, A. Marine heatwaves and their depth structures on the northeast U.S. continental shelf. Front. Clim. 4, 857937 (2022).
Article
Google Scholar
Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).
Article
Google Scholar
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).
Article
Google Scholar
Global Ocean Physics Reanalysis (EU Copernicus Marine Service Information (CMEMS) and Marine Data Store (MDS), accessed 13 May 2021); https://doi.org/10.48670/moi-00021
Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).
Article
CAS
Google Scholar
Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (2019). Retrieved from https://www.aquamaps.org
Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California Current system: early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).
Article
Google Scholar
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Article
Google Scholar
Holte, J., Talley, L. D., Gilson, J. & Roemmich, D. An Argo mixed layer climatology and database. Geophys. Res. Lett. 44, 5618–5626 (2017).
Article
Google Scholar
Imawaki, S. et al. in Observing the Oceans in the 21st Century (eds Koblinsky, C. & Smith, N.) 285–306 (Godae Project Office, Bureau of Meteorology, 2001).
Chaikin, S., Dubiner, S. & Belmaker, J. Cold-water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 31, 75–88 (2022).
Article
Google Scholar
Cartes, J. E. et al. Changes in deep-sea fish and crustacean communities at 1000–2200m in the western Mediterranean after 25 years: relation to hydro-climatic conditions. J. Mar. Syst. 143, 138–153 (2015).
Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian basin of the Arctic Ocean. Science 356, 285–291 (2017).
Article
CAS
Google Scholar
Woodgate, R. A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 160, 124–154 (2018).
Article
Google Scholar
Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).
Article
CAS
Google Scholar
Strass, V. H. et al. Multidecadal warming and density loss in the deep Weddell Sea, Antarctica. J. Clim. 33, 9863–9881 (2020).
Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
Article
Google Scholar
sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).
Article
Google Scholar
Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of eastern upwelling systems on marine heatwaves occurrence. Glob. Planet. Change 196, 103379 (2021).
Article
Google Scholar
Pinault, J. L. A review of the role of the oceanic Rossby waves in climate variability. J. Mar. Sci. Eng. 10, 493 (2022).
Article
Google Scholar
Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).
Article
CAS
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Article
CAS
Google Scholar
Straub, S. C. et al. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
Article
Google Scholar
Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).
Article
Google Scholar
Haguenauer, A. et al. Deep heat: a comparison of water temperature, anemone bleaching, anemonefish density and reproduction between shallow and mesophotic reefs. Fishes 6, 37 (2021).
Article
Google Scholar
Bavestrello, G. et al. The red coral populations of the gulfs of Naples and Salerno: human impact and deep mass mortalities. Ital. J. Zool. 81, 552–563 (2014).
Perkins, N. R. et al. Bleaching in sponges on temperate mesophotic reefs observed following marine heatwave events. Clim. Change Ecol. 3, 100046 (2022).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Article
CAS
Google Scholar
Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).
Article
Google Scholar
Wernberg, T. in Ecosystem Collapse and Climate Change (eds Canadell, J. G. & Jackson, R. B.) 325–343 (Springer Nature, 2021).
Santana-Falcón, Y. & Séférian, R. Climate change impacts the vertical structure of marine ecosystem thermal ranges. Nat. Clim. Change 12, 935–942 (2022).
Article
Google Scholar
Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).
Article
Google Scholar
Gouvêa, L. P. et al. Phenotypic plasticity in sargassum forests may not counteract projected biomass losses along a broad latitudinal gradient. Ecosystems 26, 29–41 (2022).
Article
Google Scholar
Schubert, N., Santos, R. & Silva, J. Living in a fluctuating environment increases tolerance to marine heatwaves in the free-living coralline alga Phymatolithon lusitanicum. Front. Mar. Sci. 8, 791422 (2021).
Article
Google Scholar
Coleman, M. A. & Wernberg, T. The silver lining of extreme events. Trends Ecol. Evol. 35, 1065–1067 (2020).
Article
CAS
Google Scholar
Pershing, A. J. et al. Evidence for adaptation from the 2016 marine heatwave in the northwest Atlantic Ocean. Oceanography 31, 152–161 (2018).
Seuront, L. et al. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).
Dalton, S. J. et al. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Sci. Total Environ. 715, 136951 (2020).
Article
CAS
Google Scholar
Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 15050 (2019).
Article
CAS
Google Scholar
Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).
Article
CAS
Google Scholar
Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea. Ecol. Lett. 7, 821–828 (2004).
Article
Google Scholar
Ashford, O. S. et al. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proc. R. Soc. B 285, 1–10 (2018).
Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. 5, 4 (2017).
Article
Google Scholar
Shi, Z., Assis, J. & Costello, M. J. in Imperiled: The Encyclopedia of Conservation (eds DellaSala, D. A. & Goldstein, M. I.) 887–894 (Elsevier, 2022).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Gerringer, M. E. et al. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front. Zool. 18, 16 (2021).
Article
CAS
Google Scholar
Szekely, T., Gourrion, J., Pouliquen, S. & Reverdin, G. CORA, Coriolis Ocean Dataset for Reanalysis (SEANOE, 2023); https://doi.org/10.17882/46219
Verezemskaya, P. et al. Assessing eddying (1/12°) ocean reanalysis GLORYS12 using the 14-yr instrumental record from 59.5° N section in the Atlantic. J. Geophys. Res. Oceans 126, e2020JC016317 (2021).
Article
Google Scholar
Artana, C. et al. The Malvinas Current at the confluence with the Brazil Current: inferences from 25 years of Mercator Ocean reanalysis. J. Geophys. Res. Oceans 124, 7178–7200 (2019).
Article
Google Scholar
Poli, L. et al. Anatomy of subinertial waves along the Patagonian shelf break in a 1/12° global operational model. J. Geophys. Res. Oceans 125, e2020JC016549 (2020).
Article
Google Scholar
Lellouche, J.-M. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).
Article
Google Scholar
Drévillon, M. et al. Quality Information Document for Global Ocean Reanalysis Products: GLOBAL_REANALYSIS_PHY_001_030 (EU Copernicus Marine Service, 2021); https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf
Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
Article
Google Scholar
McPhaden, M. J. et al. The global tropical moored buoy array. In Proc. OceanObs’09: Sustained Ocean Observations and Information for Society 668–682 (European Space Agency, 2010); https://www.aoml.noaa.gov/phod/docs/McPhaden_TheGlobalTropical.pdf
Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).
Bondaruk, B., Roberts, S. A. & Robertson, C. Assessing the state of the art in discrete global grid systems: OGC criteria and present functionality. Geomatica 74, 9–30 (2020).
Article
Google Scholar
Gouhier, T. C. & Guichard, F. Synchrony: quantifying variability in space and time. Methods Ecol. Evol. 5, 524–533 (2014).
Article
Google Scholar
Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).
Article
Google Scholar
Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).
Article
Google Scholar
Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).
Article
CAS
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org
Fragkopoulou, E. et al. Marine biodiversity exposed to prolonged and intense subsurface heatwaves. Figshare https://doi.org/10.6084/m9.figshare.19174985 (2023).