Popovich, N. & Choi-Schagrin, W. Hidden toll of the Northwest warmth wave: lots of of additional deaths. The New York Instances (11 August 2021).
Extra Deaths Related to COVID-19 (CDC, 2021); https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
Warmth-Associated Deaths in B.C. Data Replace (BC Coroners Service, accessed August 2021); https://www2.gov.bc.ca/belongings/gov/delivery-adoption-demise-marriage-and-divorce/deaths/coroners-service/statistical/heat_related_deaths_in_bc_knowledge_update.pdf
Schramm, P. J. et al. Warmth-associated emergency division visits throughout the Northwestern warmth wave—United States, June 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1020–1021 (2021).
American Housing Survey (AHS) (US Census Bureau, accessed August 2021); https://www.census.gov/applications-surveys/ahs.html
Tigchelaar, M., Battisti, D. S. & Spector, J. T. Work diversifications inadequate to handle rising warmth threat for U.S. agricultural employees. Environ. Res. Lett. 15, 094035 (2020).
Map Archive (U.S. Drought Monitor, accessed August 2021); https://droughtmonitor.unl.edu/Maps/MapArchive.aspx
Nationwide Fireplace Information (NICF, accessed August 2021); https://www.nifc.gov/fireplace-data/nfn
Silverman, H., Man, M. & Sutton, J. Western wildfire smoke is contributing to New York Metropolis’s worst air high quality in 15 years. CNN (21 July 2021); https://version.cnn.com/2021/07/21/climate/us-western-wildfires-wednesday/index.html
Meehl, G. A. & Tebaldi, C. Extra intense, extra frequent, and longer lasting warmth waves within the twenty first century. Science 305, 994–997 (2004).
Perkins-Kirkpatrick, S. E. & Lewis, S. C. Rising tendencies in regional heatwaves. Nat. Commun. 11, 3357 (2020).
Philip, S. Y. et al. Speedy Attribution Evaluation of the Extraordinary Heatwave on the Pacific Coast (World Climate Attribution, 2021); https://www.worldweatherattribution.org/wp-content material/uploads/NW-US-excessive-heat-2021-scientific-report-WWA.pdf
Coumou, D. & Robinson, A. Historic and future improve within the international land space affected by month-to-month warmth extremes. Environ. Res. Lett. 8, 034018 (2013).
Energy, S. B. & Delage, F. P. D. Setting and smashing excessive temperature information over the approaching century. Nat. Clim. Change 9, 529–534 (2019).
Fischer, E. M., Sippel, S. & Knutti, R. Rising chance of file-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).
Thompson, V. et al. The 2021 western North America warmth wave among the many most excessive occasions ever recorded globally. Sci. Adv. 8, eabm6860 (2022).
Taleb, N. N. The Black Swan: The Impression of the Extremely Unbelievable (Random Home, 2007).
Aven, T. On the which means of a black swan in a threat context. Saf. Sci. 57, 44–51 (2013).
Lin, N. & Emanuel, Okay. Gray swan tropical cyclones. Nat. Clim. Change 6, 106–111 (2015).
Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and up to date Northern Hemisphere climate extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).
Petoukhov, V. et al. Position of quasiresonant planetary wave dynamics in current boreal spring-to-autumn excessive occasions. Proc. Natl Acad. Sci. USA 113, 6862–6867 (2016).
Display screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour explicit regional climate extremes. Nat. Clim. Change 4, 704–709 (2014).
Kornhuber, Okay. et al. Summertime planetary wave resonance within the Northern and Southern Hemispheres. J. Clim. 30, 6133–6150 (2017).
Kornhuber, Okay. et al. Amplified Rossby waves improve threat of concurrent heatwaves in main breadbasket areas. Nat. Clim. Change 10, 48–53 (2019).
Mann, M. E. et al. Affect of anthropogenic climate change on planetary wave resonance and excessive climate occasions. Sci. Rep. 7, 45242 (2017).
Mann, M. E. et al. Projected modifications in persistent excessive summer season climate occasions: the function of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).
Kornhuber, Okay. & Tamarin-Brodsky, T. Future modifications in northern hemisphere summer season climate persistence linked to projected arctic warming. Geophys. Res. Lett. 48, e2020GL091603 (2021).
Hirschi, M. et al. Observational proof for soil-moisture influence on sizzling extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2010).
Miralles, D. G., van den Berg, M. J., Teuling, A. J. & de Jeu, R. A. M. Soil moisture–temperature coupling: a multiscale observational evaluation. Geophys. Res. Lett. 39, L21707 (2012).
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vilà-Guerau de Arellano, J. Mega-heatwave temperatures on account of mixed soil desiccation and atmospheric warmth accumulation. Nat. Geosci. 7, 345–349 (2014).
Rasmijn, L. M. et al. Future equal of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nat. Clim. Change 8, 381–385 (2018).
Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R. & Cooper, H. M. Land–ambiance interactions exacerbated the drought and heatwave over northern Europe throughout summer season 2018. AGU Adv. 2, e2020AV000283 (2021).
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a altering climate: a evaluation. Earth Sci. Rev. 99, 125–161 (2010).
Koster, R. D. et al. Areas of robust coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).
Cook dinner, B. I., Smerdon, J. E., Seager, R. & Coats, S. International warming and twenty first century drying. Clim. Dynam. 43, 2607–2627 (2014).
Cook dinner, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented twenty first century drought threat within the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
Dirmeyer, P. A. et al. Projections of the shifting envelope of water cycle variability. Clim. Change 136, 587–600 (2016).
Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–ambiance coupling and climate change in Europe. Nature 443, 205–209 (2006).
Petoukhov, V. et al. Alberta wildfire 2016: apt contribution from anomalous planetary wave dynamics. Sci. Rep. 8, 12375 (2018).
Teng, H. & Branstator, G. Amplification of waveguide teleconnections within the boreal summer season. Curr. Clim. Change Rep. 5, 421–432 (2019).
Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest warmth wave and related blocking: meteorology and the function of an upstream cyclone as a diabatic supply of wave exercise. Geophys. Res. Lett. 49, e2021GL097699 (2022).
Wang, J. et al. Altering lengths of the 4 seasons by international warming. Geophys. Res. Lett. 48, e2020GL091753 (2021).
Berg, A. et al. Impression of soil moisture–ambiance interactions on floor temperature distribution. J. Clim. 27, 7976–7993 (2014).
Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing excessive occasions to climate change: a brand new frontier in a warming world. One Earth 2, 522–527 (2020).
van Oldenborgh, G. J. et al. Pathways and pitfalls in excessive occasion attribution. Clim. Change 166, 13 (2021).
Philip, S. et al. A protocol for probabilistic excessive occasion attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).
McKinnon, Okay. A., Rhines, A., Tingley, M. P. & Huybers, P. The altering form of Northern Hemisphere summer season temperature distributions. J. Geophys. Res. 121, 8849–8868 (2016).
Volodin, E. M. & Yurova, A. Y. Summer time temperature normal deviation, skewness and robust optimistic temperature anomalies within the current day climate and beneath international warming circumstances. Clim. Dynam. 40, 1387–1398 (2013).
Philip, S. Y. et al. Speedy attribution evaluation of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Preprint at Earth Syst. Dynam. https://doi.org/10.5194/esd-2021-90 (2021).
White, R. H., Kornhuber, Okay., Martius, O. & Wirth, V. From atmospheric waves to heatwaves: a waveguide perspective for understanding and predicting concurrent, persistent and excessive extratropical climate. Bull. Am. Meteorol. Soc. 103, E923–E935 (2021).
Xu, P. et al. Amplified waveguide teleconnections alongside the polar entrance jet favor summer season temperature extremes over northern Eurasia. Geophys. Res. Lett. 48, e2021GL093735 (2021).
Liu, Y., Solar, C. & Li, J. The boreal summer season zonal wavenumber-3 development sample and its reference to floor enhanced warming. J. Clim. 35, 833–850 (2022).
Solar, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection throughout boreal summer season. Nat. Commun. 13, 1288 (2022).
Dirmeyer, P. A. The terrestrial section of soil moisture–climate coupling. Geophys. Res. Lett. 38, L16702 (2011).
Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. Quantifying spatiotemporal variations of soil moisture management on floor power steadiness and close to-floor air temperature. J. Clim. 30, 7105–7124 (2017).
Mueller, B. & Seneviratne, S. I. Sizzling days induced by precipitation deficits on the international scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).
Hersbach, H. et al. The ERA5 international reanalysis. Q. J. Roy. Meteor. Soc. 146, 1999–2049 (2020).
Lee, D. E., Ting, M., Vigaud, N., Kushnir, Y. & Barnston, A. G. Atlantic multidecadal variability as a modulator of precipitation variability within the Southwest United States. J. Clim. 31, 5525–5542 (2018).
Pomposi, C., Giannini, A., Kushnir, Y. & Lee, D. E. Understanding Pacific Ocean affect on interannual precipitation variability within the Sahel. Geophys. Res. Lett. 43, 9234–9242 (2016).
Neale, R. B. et al. The imply climate of the Neighborhood Environment Mannequin (CAM4) in pressured SST and totally coupled experiments. J. Clim. 26, 5150–5168 (2013).
Titchner, H. A. & Rayner, N. A. The Met Workplace Hadley Centre sea ice and sea floor temperature information set, model 2: 1. Sea ice concentrations. J. Geophys. Res. 119, 2864–2889 (2014).
Hauser, M., Orth, R. & Seneviratne, S. I. Investigating soil moisture–climate interactions with prescribed soil moisture experiments: an evaluation with the Neighborhood Earth System Mannequin (model 1.2). Geosci. Mod. Dev. 10, 1665–1677 (2017).
Humphrey, V. et al. Soil moisture–ambiance suggestions dominates land carbon uptake variability. Nature 592, 65–69 (2021).
Hauser, M. mathause/cmip_temperatures: model 0.2.1. Zenodo https://doi.org/10.5281/zenodo.5532894 (2021).
Coles, S. An Introduction to Statistical Modeling of Excessive Values (Springer, 2001).
Paciorek, C. climextRemes: instruments for analyzing climate extremes. Zenodo https://doi.org/10.5281/zenodo.3240582 (2019).
Bell, B. et al. The ERA5 international reanalysis: preliminary extension to 1950. Q. J. Roy. Meteor. Soc. 147, 4186–4227 (2021).
Information. GISS: GISS floor temperature evaluation (GISTEMP v4) (NASA, accessed January 2022); https://information.giss.nasa.gov/gistemp/
Bartusek, S. sambartusek/PNW_heatwave_2021: PNW_heatwave_2021. Zenodo https://doi.org/10.5281/ZENODO.7153416 (2022).