IPCC Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Wigley, T. M. L. & Raper, S. C. B. Pure variability of the local weather system and detection of the greenhouse impact. Nature 344, 324–327 (1990).
Article
Google Scholar
Crowley, J. T. Causes of local weather change over the previous 1000 years. Science 289, 270–277 (2000).
Article
CAS
Google Scholar
Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T. A. & Hansen, J. E. Greenhouse results as a consequence of man-made perturbations of hint gases. Science 194, 685–690 (1976).
Article
CAS
Google Scholar
Paris Settlement (United Nations Framework Conference on Local weather Change, 2015).
Rio+20 United Nations Convention on Sustainable Growth The Future We Need: Final result Doc of the United Nations Convention on Sustainable Growth (United Nations, 2012).
Basheer, M. et al. Collaborative administration of the Grand Ethiopian Renaissance Dam will increase financial advantages and resilience. Nat. Commun. 12, 5622 (2021).
Article
CAS
Google Scholar
Settlement between the Republic of the Sudan and the United Arab Republic for the Full Utilization of the Nile Waters (Worldwide Water Legislation Undertaking, 1959); http://internationalwaterlaw.org/paperwork/regionaldocs/uar_sudan.html
Cascão, A. E. & Nicol, A. GERD: new norms of cooperation within the Nile Basin? Water Int. 41, 550–573 (2016).
Article
Google Scholar
Salman, S. The Grand Ethiopian Renaissance Dam: the highway to the declaration of rules and the Khartoum doc. Water Int. 41, 512–527 (2016).
Article
Google Scholar
Tawfik, R. The Grand Ethiopian Renaissance Dam: a benefit-sharing mission within the Japanese Nile? Water Int. 41, 574–592 (2016).
Article
Google Scholar
Wheeler, Okay. G., Jeuland, M., Corridor, J. W., Zagona, E. & Whittington, D. Understanding and managing new dangers on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).
Wheeler, Okay. et al. Exploring cooperative transboundary river administration methods for the Japanese Nile Basin. Water Resour. Res. https://doi.org/10.1029/2017WR022149 (2018).
Wheeler, Okay. G. et al. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water Int. 41, 611–634 (2016).
Article
Google Scholar
Basheer, M. et al. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the water–vitality–meals nexus: the Blue Nile Basin. Sci. Complete Environ. 630, 1309–1323 (2018).
Article
CAS
Google Scholar
Basheer, M. Cooperative operation of the Grand Ethiopian Renaissance Dam reduces Nile riverine floods. River Res. Appl. 47, 805–814 (2021).
Article
Google Scholar
Elagib, N. A. & Basheer, M. Would Africa’s largest hydropower dam have profound environmental impacts? Environ. Sci. Pollut. Res. 28, 8936–8944 (2021).
Article
CAS
Google Scholar
Joint Assertion of Egypt, Ethiopia, Sudan, the USA and the World Financial institution (United States Division of the Treasury, 2020); https://residence.treasury.gov/information/press-releases/sm891
Edrees, M. Letter dated 11 June 2021 from the Everlasting Consultant of Egypt to the United Nations addressed to the Secretary-Genera (United Nations, 2021); https://digitallibrary.un.org/report/3931750?ln=en
Amde, T. A. Letter dated 14 Might 2020 from the Everlasting Consultant of Ethiopia to the United Nations addressed to the President of the Safety Council (United Nations, 2020); https://digitallibrary.un.org/report/3862715?ln=en
Taye, M. T., Willems, P. & Block, P. Implications of local weather change on hydrological extremes within the Blue Nile Basin: a assessment. J. Hydrol. Reg. Stud. 4, 280–293 (2015).
Article
Google Scholar
Di Baldassarre, G. et al. Future hydrology and local weather within the River Nile Basin: a assessment. Hydrol. Sci. J. 56, 199–211 (2011).
Article
Google Scholar
Bhattacharjee, P. S. & Zaitchik, B. F. Views on CMIP5 mannequin efficiency within the Nile River headwaters areas. Int. J. Climatol. 35, 4262–4275 (2015).
Article
Google Scholar
Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive coverage pathways: a technique for crafting strong selections for a deeply unsure world. Glob. Environ. Change 23, 485–498 (2013).
Article
Google Scholar
Hui, R., Herman, J., Lund, J. & Madani, Okay. Adaptive water infrastructure planning for nonstationary hydrology. Adv. Water Resour. 118, 83–94 (2018).
Article
Google Scholar
Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M. & Popper, S. W. (eds) Resolution Making beneath Deep Uncertainty: From Idea to Follow (Springer, 2019).
Smith, M. et al. Adaptation’s Thirst: Accelerating the Convergence of Water and Local weather Motion (World Fee on Adaptation, 2019).
Hallegatte, S. Methods to adapt to an unsure local weather change. Glob. Environ. Change 19, 240–247 (2009).
Article
Google Scholar
Reed, P. M. et al. Multisector dynamics: advancing the science of complicated adaptive human–Earth techniques. Earth’s Future 10, e2021EF002621 (2022).
Article
Google Scholar
Walker, W. E., Haasnoot, M. & Kwakkel, J. H. Adapt or perish: a assessment of planning approaches for adaptation beneath deep uncertainty. Sustainability 5, 955–979 (2013).
Article
Google Scholar
Kwadijk, J. C. J. et al. Utilizing adaptation tipping factors to organize for local weather change and sea stage rise: a case examine within the Netherlands. WIREs Clim. Change 1, 729–740 (2010).
Article
Google Scholar
Kwakkel, J. H., Walker, W. E. & Marchau, V. Adaptive airport strategic planning. Eur. J. Transp. Infrastruct. Res. 10, 249–273 (2010).
Kwakkel, J. H., Haasnoot, M. & Walker, W. E. Creating dynamic adaptive coverage pathways: a computer-assisted strategy for creating adaptive methods for a deeply unsure world. Climatic Change 132, 373–386 (2015).
Article
Google Scholar
Zeff, H. B., Herman, J. D., Reed, P. M. & Characklis, G. W. Cooperative drought adaptation: integrating infrastructure growth, conservation, and water transfers into adaptive coverage pathways. Water Resour. Res. https://doi.org/10.1002/2016WR018771 (2016).
Fletcher, S., Lickley, M. & Strzepek, Okay. Studying about local weather change uncertainty allows versatile water infrastructure planning. Nat. Commun. 10, 1782 (2019).
Article
Google Scholar
Cohen, J. S. & Herman, J. D. Dynamic adaptation of water sources techniques beneath uncertainty by studying coverage construction and indicators. Water Resour. Res. 57, e2021WR030433 (2021).
Article
Google Scholar
Ricalde, I. et al. Assessing tradeoffs within the design of local weather change adaptation methods for water utilities in Chile. J. Environ. Handle. 302, 114035 (2022).
Article
Google Scholar
Pachos, Okay., Huskova, I., Matrosov, E., Erfani, T. & Harou, J. J. Commerce-off knowledgeable adaptive and strong actual choices water sources planning. Adv. Water Resour. 161, 104117 (2022).
Article
Google Scholar
Gold, D. F., Reed, P. M., Gorelick, D. E. & Characklis, G. W. Energy and pathways: exploring robustness, cooperative stability, and energy relationships in regional infrastructure funding and water provide administration portfolio pathways. Earth’s Future 10, e2021EF002472 (2022).
Beh, E. H. Y., Maier, H. & Dandy, G. C. Adaptive, multiobjective optimum sequencing strategy for city water provide augmentation beneath deep uncertainty. Water Resour. Res. https://doi.org/10.1002/2014WR016254 (2015).
O’Neill, B. C. et al. The State of affairs Mannequin Intercomparison Undertaking (ScenarioMIP) for CMIP6. Geosci. Mannequin Dev. 9, 3461–3482 (2016).
Article
Google Scholar
Wainwright, C. M. et al. ‘Eastern African Paradox’ rainfall decline as a consequence of shorter not much less intense Lengthy Rains. NPJ Clim. Atmos. Sci. 2, 34 (2019).
Article
Google Scholar
Rowell, D. P., Sales space, B. B. B., Nicholson, S. E. & Good, P. Reconciling previous and future rainfall tendencies over East Africa. J. Clim. 28, 9768–9788 (2015).
Article
Google Scholar
Riahi, Okay. et al. The Shared Socioeconomic Pathways and their vitality, land use, and greenhouse fuel emissions implications: an summary. Glob. Environ. Change 42, 153–168 (2017).
Article
Google Scholar
KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: inhabitants situations by age, intercourse and stage of training for all nations to 2100. Glob. Environ. Change 42, 181–192 (2017).
Article
Google Scholar
Crespo Cuaresma, J. Revenue projections for local weather change analysis: a framework based mostly on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).
Article
Google Scholar
Water Degree (Copernicus World Land Service, 2022); https://land.copernicus.eu/world/merchandise/wl
Inselberg, A. in Tendencies in Interactive Visualization: State-of-the-Artwork Survey (eds Liere, R. et al.) 49–78 (Springer, 2009).
Goulden, M., Conway, D. & Persechino, A. Adaptation to local weather change in worldwide river basins in Africa: a assessment. Hydrol. Sci. J. 54, 805–828 (2009).
Article
Google Scholar
Dasgupta, P. The Economics of Biodiversity: The Dasgupta Evaluate (HM Treasury, 2021).
François, B., Vrac, M., Cannon, A. J., Robin, Y. & Allard, D. Multivariate bias corrections of local weather simulations: which advantages for which losses? Earth Syst. Dyn. 11, 537–562 (2020).
Article
Google Scholar
Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how properly do strategies protect modifications in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).
Article
Google Scholar
Mehrotra, R. & Sharma, A. A resampling strategy for correcting systematic spatiotemporal biases for a number of variables in a altering local weather. Water Resour. Res. 55, 754–770 (2019).
Article
Google Scholar
Vrac, M. & Friederichs, P. Multivariate-intervariable, spatial, and temporal-bias correction. J. Clim. 28, 218–237 (2015).
Article
Google Scholar
Beck, H. E. et al. MSWEP v2 world 3-hourly 0.1° precipitation: methodology and quantitative evaluation. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).
Article
Google Scholar
Sheffield, J., Goteti, G. & Wooden, E. F. Growth of a 50-year high-resolution world dataset of meteorological forcings for land floor modeling. J. Clim. 19, 3088–3111 (2006).
Article
Google Scholar
Walker, D. P., Marsham, J. H., Birch, C. E., Scaife, A. A. & Finney, D. L. Frequent mechanism for interannual and decadal variability within the East African Lengthy Rains. Geophys. Res. Lett. 47, e2020GL089182 (2020).
King, J. A. & Washington, R. Future modifications within the Indian Ocean Walker Circulation and hyperlinks to Kenyan rainfall. J. Geophys. Res. Atmos. 126, e2021JD034585 (2021).
Article
Google Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper: Crop Evapotranspiration (FAO, 1998).
Liang, X., Lettenmaier, D. P., Wooden, E. F. & Burges, S. J. A easy hydrologically based mostly mannequin of land floor water and vitality fluxes for normal circulation fashions. J. Geophys. Res. 99, 14415–14428 (1994).
David, C. H. et al. River community routing on the NHDPlus dataset. J. Hydrometeorol. 12, 913–934 (2011).
Article
Google Scholar
Lin, P. et al. World reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).
Article
Google Scholar
Growth of the Japanese Nile Water Simulation Mannequin (Deltares, 2013).
Gill, M. A. Flood routing by the Muskingum methodology. J. Hydrol. 36, 353–363 (1978).
Article
Google Scholar
Lehner, B. & Grill, G. World river hydrography and community routing: baseline knowledge and new approaches to check the world’s massive river techniques. Hydrol. Course of. 27, 2171–2186 (2013).
Article
Google Scholar
Tomlinson, J. E., Arnott, J. H. & Harou, J. J. A water useful resource simulator in Python. Environ. Mannequin. Softw. 126, 104635 (2020).
Article
Google Scholar
Wurbs, R. A. Generalized Fashions of River System Growth and Administration (IntechOpen, 2011).
Basheer, M., Sulieman, R. & Ribbe, L. Exploring administration approaches for water and vitality within the data-scarce Tekeze-Atbara Basin beneath hydrologic uncertainty. Int. J. Water Resour. Dev. 37, 182–207 (2021).
Article
Google Scholar
Basheer, M. & Elagib, N. A. Sensitivity of water–vitality nexus to dam operation: a water–vitality productiveness idea. Sci. Complete Environ. 616–617, 918–926 (2018).
Article
Google Scholar
Basheer, M. et al. Filling Africa’s largest hydropower dam ought to contemplate engineering realities. One Earth 3, 277–281 (2020).
Article
Google Scholar
Jeuland, M., Wu, X. & Whittington, D. Infrastructure growth and the economics of cooperation within the Japanese Nile. Water Int. https://doi.org/10.1080/02508060.2017.1278577 (2017).
Lofgren, H., Lee, R., Robinson, S., Thomas, M. & El-Stated, M. A Commonplace Computable Normal Equilibrium (CGE) Mannequin in GAMS (Worldwide Meals Coverage Analysis Institute, 2002).
Armington, P. S. A idea of demand for merchandise distinguished by place of manufacturing. Employees Pap. 16, 159–178 (1969).
Article
Google Scholar
Siddig, Okay., Elagra, S., Grethe, H. & Mubarak, A. A Submit-separation Social Accounting Matrix for the Sudan (Worldwide Meals Coverage Analysis Institute, 2018); https://doi.org/10.2499/1024320695
Al-Riffai, P. et al. A Disaggregated Social Accounting Matrix: 2010/11 for Coverage Evaluation in Egypt (Worldwide Meals Coverage Analysis Institute, 2016); http://ebrary.ifpri.org/cdm/ref/assortment/p15738coll2/id/130736
Ahmed, H. A., Tebekew, T. & Thurlow, J. 2010/11 Social Accounting Matrix for Ethiopia: A Nexus Undertaking SAM (Worldwide Meals Coverage Analysis Institute, 2017); http://ebrary.ifpri.org/utils/getfile/assortment/p15738coll2/id/131505/filename/131720.pdf
Chepeliev, M. Gtap-Energy knowledge base: model 10. J. Glob. Econ. Anal. 5, 110–137 (2020).
Article
Google Scholar
Jiang, L. & O’Neill, B. C. World urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).
Article
Google Scholar
Fouré, J., Bénassy-Quéré, A. & Fontagné, L. Modelling the world economic system on the 2050 horizon. Econ. Transit. Inst. Change 21, 617–654 (2013).
Google Scholar
Gidden, M. J. et al. World emissions pathways beneath completely different socioeconomic situations to be used in CMIP6: a dataset of harmonized emissions trajectories via the tip of the century. Geosci. Mannequin Dev. 12, 1443–1475 (2019).
Article
CAS
Google Scholar
Knox, S., Meier, P., Yoon, J. & Harou, J. J. A Python framework for multi-agent simulation of networked useful resource techniques. Environ. Mannequin. Softw. 103, 16–28 (2018).
Article
Google Scholar
Deb, Okay. & Jain, H. An evolutionary many-objective optimization algorithm utilizing reference-point-based nondominated sorting strategy, half I: fixing issues with field constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014).
Article
Google Scholar
Hadka, D. Platypus. GitHub https://github.com/Undertaking-Platypus/Platypus (2016).
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. & Da Fonseca, V. G. Efficiency evaluation of multiobjective optimizers: an evaluation and assessment. IEEE Trans. Evol. Comput. 7, 117–132 (2003).
Article
Google Scholar
Basheer, M. et al. Balancing nationwide financial coverage outcomes for sustainable growth. Nat. Commun. 13, 5041 (2022).
Article
CAS
Google Scholar
Breiman, L. Random Forests. Mach. Be taught. 45, 5–32 (2001).
Article
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Be taught. Res. 12, 2825–2830 (2011).
Google Scholar
Basheer, M., Nechifor, V., Calzadilla, A., Harou, J. J., Information associated to a examine on adaptive administration of Nile infrastructure. Zenodo https://doi.org/10.5281/zenodo.5914757 (2022).