Climate
Latest waning snowpack within the Alps is unprecedented within the final six centuries
Published
2 months agoon
By
admin
Beniston, M. et al. The European mountain cryosphere: a evaluate of its present state, tendencies, and future challenges. Cryosphere 12, 759–794 (2018).
Rodell, M. et al. Rising tendencies in world freshwater availability. Nature 557, 651–659 (2018).
Immerzeel, W. W. et al. Significance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Hock R. et al. in IPCC Particular Report on the Ocean and Cryosphere in a Altering Local weather (eds Pörtner, H. O. et al.) 131–202 (Cambridge Univ. Press, 2019).
Niittynen, P., Heikkinen, R. Ok. & Luoto, M. Snow cowl is a uncared for driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
Matiu, M. et al. Noticed snow depth tendencies within the European Alps: 1971 to 2019. Cryosphere 15, 1343–1382 (2021).
Auer, I. et al. HISTALP—historic instrumental climatological floor time sequence of the Higher Alpine Area. Int. J. Climatol. 27, 17–46 (2007).
Casty, C., Wanner, H., Luterbacher, J., Esper, J. & Böhm, R. Temperature and precipitation variability within the European Alps since 1500. Int. J. Climatol. 25, 1855–1880 (2005).
Cook dinner, E. R. et al. Outdated World megadroughts and pluvials through the Widespread Period. Sci. Adv. 1, e1500561 (2015).
Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. 5 hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim. Dynam. 26, 387–405 (2006).
Coppola, A., Leonelli, G., Salvatore, M. C., Pelfini, M. & Baroni, C. Tree-ring based mostly summer time imply temperature variations within the Adamello-Presanella Group (Italian Central Alps), 1610–2008 advert. Clim. Previous 9, 211–221 (2013).
Trachsel, M. et al. Multi-archive summer time temperature reconstruction for the European Alps, advert 1053–1996. Quat. Sci. Rev. 46, 66–79 (2012).
Büntgen, U., Esper, J., Frank, D. C., Nicolussi, Ok. & Schmidhalter, M. A 1052-year tree-ring proxy for Alpine summer time temperatures. Clim. Dynam. 25, 141–153 (2005).
Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer time temperature variations within the European Alps, A.D. 755–2004. J. Clim. 19, 5606–5623 (2006).
Corona, C. et al. Millennium-long summer time temperature variations within the European Alps as reconstructed from tree rings. Clim. Previous 6, 379–400 (2010).
Fritts, H. C. Tree Rings and Local weather (Tutorial Press, 1976).
Coulthard, B. L. et al. Snowpack alerts in North American tree rings. Environ. Res. Lett. 16, 034037 (2021).
Appleton, S. N. & St. George, S. Excessive-elevation mountain hemlock development as a surrogate for cool-season precipitation in Crater Lake Nationwide Park, USA. Dendrochronologia 52, 20–28 (2018).
Mercalli L. & Castellano C. Western Italian Alps Month-to-month Snowfall and Snow Cowl Period, Model 1 (NSIDC, 1999).
Valt, M. & Cianfarra, P. Latest snow cowl variability within the Italian Alps. Chilly Reg. Sci. Tech. 64, 146–157 (2010).
Beniston, M. Is snow within the Alps receding or disappearing? WIREs Clim. Change 3, 349–358 (2012).
Klein, G., Vitasse, Y., Rixen, C., Marty, C. & Rebetez, M. Shorter snow cowl period since 1970 within the Swiss Alps attributable to earlier snowmelt greater than to later snow onset. Clim. Change 139, 637–649 (2016).
Hüsler, F., Jonas, T., Riffler, M., Musial, J. P. & Wunderle, S. A satellite-based snow cowl climatology (1985–2011) for the European Alps derived from AVHRR information. Cryosphere 8, 73–90 (2014).
Notarnicola, C. Hotspots of snow cowl adjustments in world mountain areas over 2000–2018. Distant Sens. Environ. 243, 111781 (2020).
Körner, C. Alpine Treelines: Useful Ecology of the International Excessive Elevation Tree Limits (Springer, 2012).
Carrer, M., Pellizzari, E., Prendin, A. L., Pividori, M. & Brunetti, M. Winter precipitation—not summer time temperature—continues to be the primary driver for Alpine shrub development. Sci. Complete Environ. 682, 171–179 (2019).
Kotlarski, S. et al. twenty first century alpine local weather change. Clim. Dynam. https://doi.org/10.1007/s00382-022-06303-3 (2022).
Largeron, C. et al. Towards snow cowl estimation in mountainous areas utilizing fashionable information assimilation strategies: a evaluate. Entrance. Earth Sci. https://doi.org/10.3389/feart.2020.00325 (2020).
Carturan, L. et al. Reconstructing fluctuations of La Mare Glacier (Japanese Italian Alps) within the late holocene: new proof for a Little Ice Age most round 1600 advert. Geogr. Ann. Ser. A 96, 287–306 (2014).
Brázdil, R. et al. Droughts within the Czech Lands, 1090–2012 advert. Clim. Previous 9, 1985–2002 (2013).
Pfister, C., Rohr, C. & Jover, A. Euro-Climhist: eine Datenplattform der Universität Bern zur Witterungs-, Klima-und Katastrophengeschichte. Wasser Energie Luft 109, 45–48 (2017).
Pfister, C. & Wanner, H. Local weather and Society in Europe: The Final Thousand Years (Haupt, 2021).
Brugnara, Y. et al. December 1916: lethal wartime climate. Geogr. Bernensia G91, 8 (2016).
Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equal on this planet’s mountains. WIREs Water 3, 461–474 (2016).
Fayad, A. et al. Snow hydrology in Mediterranean mountain areas: a evaluate. J. Hydrol. 551, 374–396 (2017).
Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century analysis of Sierra Nevada snowpack. Nat. Clim. Change 6, 2–3 (2015).
Beikircher, B. & Mayr, S. The hydraulic structure of Juniperus communis L. ssp. communis: shrubs and timber in contrast. Plant Cell Environ. 31, 1545–1556 (2008).
Pellizzari, E., Pividori, M. & Carrer, M. Winter precipitation impact in a mid-latitude temperature-limited surroundings: the case of frequent juniper at excessive elevation within the Alps. Environ. Res. Lett. 9, 104021 (2014).
Jones, H. G., Pomeroy, J. W., Walker, D. A. & Hoham, R. W. Snow Ecology: An Interdisciplinary Examination of Snow-Coated Ecosystems (Cambridge Univ. Press, 2001).
Trawöger, L. Satisfied, ambivalent or aggravated: Tyrolean ski tourism stakeholders and their perceptions of local weather change. Tour. Manag. 40, 338–351 (2014).
Morrison, C. & Pickering, C. M. Perceptions of local weather change impacts, adaptation and limits to adaption within the Australian Alps: the ski-tourism business and key stakeholders. J. Sust. Tour. 21, 173–191 (2013).
McCright, A. M., Dunlap, R. E. & Xiao, C. The impacts of temperature anomalies and political orientation on perceived winter warming. Nat. Clim. Change 4, 1077–1081 (2014).
Stoffel, M. & Corona, C. Future winters glimpsed within the Alps. Nat. Geosci. 11, 458–460 (2018).
Adams R. P. Junipers of the World: The Genus Juniperus (Trafford Publishing, 2014).
Marty, C., Schlögl, S., Bavay, M. & Lehning, M. How a lot can we save? Impression of various emission eventualities on future snow cowl within the Alps. Cryosphere 11, 517–529 (2017).
Wigley, T. M. L., Briffa, Ok. R. & Jones, P. D. On the common worth of correlated time sequence with functions in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteor. 23, 201–213 (1984).
Brigham, E. O. The Quick Fourier Rework and its Functions (Prentice-Corridor, 1988).
Brunetti, M., Maugeri, M., Monti, F. & Nannia, T. Temperature and precipitation variability in Italy within the final two centuries from homogenised instrumental time sequence. Int. J. Climatol. 26, 345–381 (2006).
Simolo, C., Brunetti, M., Maugeri, M. & Nanni, T. Evolution of maximum temperatures in a warming local weather. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048437 (2011).
Venema, V. Ok. C. et al. Benchmarking homogenization algorithms for month-to-month information. Clim. Previous 8, 89–115 (2012).
Auer, A. H. The rain versus snow threshold temperatures. Weatherwise https://doi.org/10.1080/00431672.1974.9931684 (1974).
Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gustafsson, D. Meteorological information helpful for the development of snow rain separation in floor based mostly fashions. Hydrology 2, 266–288 (2015).
Bartlett, P. A., MacKay, M. D. & Verseghy, D. L. Modified snow algorithms within the Canadian land floor scheme: mannequin runs and sensitivity evaluation at three boreal forest stands. Atmos. Ocean 44, 207–222 (2006).
Dai, A. Temperature and strain dependence of the rain–snow section transition over land and ocean. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033295 (2008).
Ohmura, A. Bodily foundation for the temperature-based melt-index technique. J. Appl. Metorol. 40, 753–761 (2001).
Rango, A. & Martinec, J. Revisiting the degree-day technique for snowmelt computations. J. Am. Water Resour. Assoc. 31, 657–669 (1995).
Wake, L. M. & Marshall, S. J. Evaluation of present strategies of constructive degree-day calculation utilizing in situ observations from glaciated areas. J. Glaciol. 61, 329–344 (2015).
Senese, A., Maugeri, M., Vuillermoz, E., Smiraglia, C. & Diolaiuti, G. Utilizing every day air temperature thresholds to judge snow melting prevalence and quantity on Alpine glaciers by T-index fashions: the case examine of the Forni Glacier (Italy). Cryosphere 8, 1921–1933 (2014).
Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. Ok. & Arnold, J. G. Setting up retrospective gridded every day precipitation and temperature datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 47, 475–497 (2008).
Matiu, M. et al. Snow cowl within the European Alps: station observations of snow depth and depth of snowfall. Zenodo https://doi.org/10.5281/zenodo.4064128 (2021).
Daly, C. et al. Physiographically delicate mapping of climatological temperature and precipitation throughout the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
von Arx, G., Crivellaro, A., Prendin, A. L., Cufar, Ok. & Carrer, M. Quantitative wooden anatomy—sensible tips. Entrance. Plant Sci. 7, 781 (2016).
Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Strategies for Plant Stem Evaluation (Kessel, 2013).
Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Relationship (Univ. of Chicago Press, 1968).
Holmes, R. L. Laptop-assisted high quality management in tree-ring relationship and measurement. Tree Ring Bull. 43, 69–78 (1983).
Melvin, T. M., Briffa, Ok. R., Nicolussi, Ok. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).
Esper, J., Cook dinner, E. R., Krusic, P. J., Peters, Ok. & Schweingruber, F. H. Assessments of the RCS technique for preserving low-frequency variability in lengthy tree-ring chronologies. Tree-Ring Res. 59, 81–98 (2003).
Cook dinner, E. R., Briffa, Ok. R., Meko, D. M., Graybill, D. A. & Funkhouser, G. The ‘segment length curse’ in lengthy tree-ring chronology growth for palaeoclimatic research. Holocene 5, 229–237 (1995).
Cook dinner, E. R., Briffa, Ok., Shiyatov, S., Mazepa, V. & Jones, P. D. in Strategies of Dendrochronology (eds Cook dinner, E. R. & Kairiukstis, L. A.) 97–162 (Kluwer, 1990).
McCarroll, D., Younger, G. H. & Loader, N. J. Measuring the talent of variance-scaled local weather reconstructions and a check for the seize of extremes. Holocene 25, 618–626 (2015).
Buras, A., Zang, C. & Menzel, A. Testing the steadiness of switch features. Dendrochronologia 42, 56–62 (2017).
Wilmking, M. et al. International evaluation of relationships between local weather and tree development. Glob. Change Biol. 26, 3212–3220 (2020).
Carrer, M., Dibona, R., Prendin, A. L. & Brunetti, M. Latest waning snowpack within the Alps is unprecedented within the final six centuries: information. Zenodo https://doi.org/10.5281/zenodo.7330950; https://doi.org/10.5281/zenodo.7333328 (2022).
Citterio, M. et al. The fluctuations of italian glaciers over the past century: a contribution to information about alpine glacier adjustments. Geogr. Ann. Ser. A 89, 167–184 (2007).
Senese, A. et al. Modelling shortwave and longwave downward radiation and air temperature driving ablation on the Forni Glacier (Stelvio Nationwide Park, Italy). Geogr. Fis. Din. Quat. 39, 89–100 (2016).
Zemp, M. et al. (eds) WSGS (2012): Fluctuations of Glaciers 2005–2010 Vol. X (World Glacier Monitoring Service, 2012).
Zemp, M. et al. (eds) WGMS (2013): Glacier Mass Stability (World Glacier Monitoring Service, 2013).
Zemp, M. et al. (eds) WGMS (2021): International Glacier Change (World Glacier Monitoring Service, 2021).


Mathematician Luis Caffarelli wins Abel prize for fixing equations with geometry

In Duluth, Actual Property Collides With Local weather

Round 2 billion folks haven’t got entry to scrub ingesting water

Utilizing Fossils to Deliver the LA River Again to Life

Vanuatu gathers help for UN local weather justice assertion

Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
Trending
-
Climate3 months ago
Utilizing Fossils to Deliver the LA River Again to Life
-
Climate3 weeks ago
Vanuatu gathers help for UN local weather justice assertion
-
Climate1 month ago
Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
-
Climate1 month ago
A Lawsuit In opposition to Massive Oil Will get Private
-
Climate1 month ago
South African President Declares ‘State of Disaster’ Over Energy Disaster
-
Biodiversity3 months ago
4 issues we’ve found from tagging Indonesia’s mantas
-
Climate1 month ago
I Need to Swap to an Electrical Range. Can the Board Cease Me?
-
Forests3 months ago
Sustainable forest administration: Indonesia navigates a paradigm shift
Leave a Reply