Connect with us

Climate

Latest waning snowpack within the Alps is unprecedented within the final six centuries

Published

on


  • Beniston, M. et al. The European mountain cryosphere: a evaluate of its present state, tendencies, and future challenges. Cryosphere 12, 759–794 (2018).

    Article 

    Google Scholar
     

  • Rodell, M. et al. Rising tendencies in world freshwater availability. Nature 557, 651–659 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Immerzeel, W. W. et al. Significance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hock R. et al. in IPCC Particular Report on the Ocean and Cryosphere in a Altering Local weather (eds Pörtner, H. O. et al.) 131–202 (Cambridge Univ. Press, 2019).

  • Niittynen, P., Heikkinen, R. Ok. & Luoto, M. Snow cowl is a uncared for driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).

    Article 

    Google Scholar
     

  • Matiu, M. et al. Noticed snow depth tendencies within the European Alps: 1971 to 2019. Cryosphere 15, 1343–1382 (2021).

    Article 

    Google Scholar
     

  • Auer, I. et al. HISTALP—historic instrumental climatological floor time sequence of the Higher Alpine Area. Int. J. Climatol. 27, 17–46 (2007).

    Article 

    Google Scholar
     

  • Casty, C., Wanner, H., Luterbacher, J., Esper, J. & Böhm, R. Temperature and precipitation variability within the European Alps since 1500. Int. J. Climatol. 25, 1855–1880 (2005).

    Article 

    Google Scholar
     

  • Cook dinner, E. R. et al. Outdated World megadroughts and pluvials through the Widespread Period. Sci. Adv. 1, e1500561 (2015).

    Article 

    Google Scholar
     

  • Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. 5 hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim. Dynam. 26, 387–405 (2006).

    Article 

    Google Scholar
     

  • Coppola, A., Leonelli, G., Salvatore, M. C., Pelfini, M. & Baroni, C. Tree-ring based mostly summer time imply temperature variations within the Adamello-Presanella Group (Italian Central Alps), 1610–2008 advert. Clim. Previous 9, 211–221 (2013).

    Article 

    Google Scholar
     

  • Trachsel, M. et al. Multi-archive summer time temperature reconstruction for the European Alps, advert 1053–1996. Quat. Sci. Rev. 46, 66–79 (2012).

    Article 

    Google Scholar
     

  • Büntgen, U., Esper, J., Frank, D. C., Nicolussi, Ok. & Schmidhalter, M. A 1052-year tree-ring proxy for Alpine summer time temperatures. Clim. Dynam. 25, 141–153 (2005).

    Article 

    Google Scholar
     

  • Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer time temperature variations within the European Alps, A.D. 755–2004. J. Clim. 19, 5606–5623 (2006).

    Article 

    Google Scholar
     

  • Corona, C. et al. Millennium-long summer time temperature variations within the European Alps as reconstructed from tree rings. Clim. Previous 6, 379–400 (2010).

    Article 

    Google Scholar
     

  • Fritts, H. C. Tree Rings and Local weather (Tutorial Press, 1976).

  • Coulthard, B. L. et al. Snowpack alerts in North American tree rings. Environ. Res. Lett. 16, 034037 (2021).

    Article 

    Google Scholar
     

  • Appleton, S. N. & St. George, S. Excessive-elevation mountain hemlock development as a surrogate for cool-season precipitation in Crater Lake Nationwide Park, USA. Dendrochronologia 52, 20–28 (2018).

    Article 

    Google Scholar
     

  • Mercalli L. & Castellano C. Western Italian Alps Month-to-month Snowfall and Snow Cowl Period, Model 1 (NSIDC, 1999).

  • Valt, M. & Cianfarra, P. Latest snow cowl variability within the Italian Alps. Chilly Reg. Sci. Tech. 64, 146–157 (2010).

    Article 

    Google Scholar
     

  • Beniston, M. Is snow within the Alps receding or disappearing? WIREs Clim. Change 3, 349–358 (2012).

    Article 

    Google Scholar
     

  • Klein, G., Vitasse, Y., Rixen, C., Marty, C. & Rebetez, M. Shorter snow cowl period since 1970 within the Swiss Alps attributable to earlier snowmelt greater than to later snow onset. Clim. Change 139, 637–649 (2016).

    Article 

    Google Scholar
     

  • Hüsler, F., Jonas, T., Riffler, M., Musial, J. P. & Wunderle, S. A satellite-based snow cowl climatology (1985–2011) for the European Alps derived from AVHRR information. Cryosphere 8, 73–90 (2014).

    Article 

    Google Scholar
     

  • Notarnicola, C. Hotspots of snow cowl adjustments in world mountain areas over 2000–2018. Distant Sens. Environ. 243, 111781 (2020).

    Article 

    Google Scholar
     

  • Körner, C. Alpine Treelines: Useful Ecology of the International Excessive Elevation Tree Limits (Springer, 2012).

  • Carrer, M., Pellizzari, E., Prendin, A. L., Pividori, M. & Brunetti, M. Winter precipitation—not summer time temperature—continues to be the primary driver for Alpine shrub development. Sci. Complete Environ. 682, 171–179 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kotlarski, S. et al. twenty first century alpine local weather change. Clim. Dynam. https://doi.org/10.1007/s00382-022-06303-3 (2022).

  • Largeron, C. et al. Towards snow cowl estimation in mountainous areas utilizing fashionable information assimilation strategies: a evaluate. Entrance. Earth Sci. https://doi.org/10.3389/feart.2020.00325 (2020).

  • Carturan, L. et al. Reconstructing fluctuations of La Mare Glacier (Japanese Italian Alps) within the late holocene: new proof for a Little Ice Age most round 1600 advert. Geogr. Ann. Ser. A 96, 287–306 (2014).

    Article 

    Google Scholar
     

  • Brázdil, R. et al. Droughts within the Czech Lands, 1090–2012 advert. Clim. Previous 9, 1985–2002 (2013).

    Article 

    Google Scholar
     

  • Pfister, C., Rohr, C. & Jover, A. Euro-Climhist: eine Datenplattform der Universität Bern zur Witterungs-, Klima-und Katastrophengeschichte. Wasser Energie Luft 109, 45–48 (2017).

  • Pfister, C. & Wanner, H. Local weather and Society in Europe: The Final Thousand Years (Haupt, 2021).

  • Brugnara, Y. et al. December 1916: lethal wartime climate. Geogr. Bernensia G91, 8 (2016).


    Google Scholar
     

  • Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equal on this planet’s mountains. WIREs Water 3, 461–474 (2016).

    Article 

    Google Scholar
     

  • Fayad, A. et al. Snow hydrology in Mediterranean mountain areas: a evaluate. J. Hydrol. 551, 374–396 (2017).

    Article 

    Google Scholar
     

  • Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century analysis of Sierra Nevada snowpack. Nat. Clim. Change 6, 2–3 (2015).

    Article 

    Google Scholar
     

  • Beikircher, B. & Mayr, S. The hydraulic structure of Juniperus communis L. ssp. communis: shrubs and timber in contrast. Plant Cell Environ. 31, 1545–1556 (2008).

    Article 

    Google Scholar
     

  • Pellizzari, E., Pividori, M. & Carrer, M. Winter precipitation impact in a mid-latitude temperature-limited surroundings: the case of frequent juniper at excessive elevation within the Alps. Environ. Res. Lett. 9, 104021 (2014).

    Article 

    Google Scholar
     

  • Jones, H. G., Pomeroy, J. W., Walker, D. A. & Hoham, R. W. Snow Ecology: An Interdisciplinary Examination of Snow-Coated Ecosystems (Cambridge Univ. Press, 2001).

  • Trawöger, L. Satisfied, ambivalent or aggravated: Tyrolean ski tourism stakeholders and their perceptions of local weather change. Tour. Manag. 40, 338–351 (2014).

    Article 

    Google Scholar
     

  • Morrison, C. & Pickering, C. M. Perceptions of local weather change impacts, adaptation and limits to adaption within the Australian Alps: the ski-tourism business and key stakeholders. J. Sust. Tour. 21, 173–191 (2013).

    Article 

    Google Scholar
     

  • McCright, A. M., Dunlap, R. E. & Xiao, C. The impacts of temperature anomalies and political orientation on perceived winter warming. Nat. Clim. Change 4, 1077–1081 (2014).

    Article 

    Google Scholar
     

  • Stoffel, M. & Corona, C. Future winters glimpsed within the Alps. Nat. Geosci. 11, 458–460 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Adams R. P. Junipers of the World: The Genus Juniperus (Trafford Publishing, 2014).

  • Marty, C., Schlögl, S., Bavay, M. & Lehning, M. How a lot can we save? Impression of various emission eventualities on future snow cowl within the Alps. Cryosphere 11, 517–529 (2017).

    Article 

    Google Scholar
     

  • Wigley, T. M. L., Briffa, Ok. R. & Jones, P. D. On the common worth of correlated time sequence with functions in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteor. 23, 201–213 (1984).

    Article 

    Google Scholar
     

  • Brigham, E. O. The Quick Fourier Rework and its Functions (Prentice-Corridor, 1988).

  • Brunetti, M., Maugeri, M., Monti, F. & Nannia, T. Temperature and precipitation variability in Italy within the final two centuries from homogenised instrumental time sequence. Int. J. Climatol. 26, 345–381 (2006).

    Article 

    Google Scholar
     

  • Simolo, C., Brunetti, M., Maugeri, M. & Nanni, T. Evolution of maximum temperatures in a warming local weather. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048437 (2011).

  • Venema, V. Ok. C. et al. Benchmarking homogenization algorithms for month-to-month information. Clim. Previous 8, 89–115 (2012).

    Article 

    Google Scholar
     

  • Auer, A. H. The rain versus snow threshold temperatures. Weatherwise https://doi.org/10.1080/00431672.1974.9931684 (1974).

  • Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gustafsson, D. Meteorological information helpful for the development of snow rain separation in floor based mostly fashions. Hydrology 2, 266–288 (2015).

    Article 

    Google Scholar
     

  • Bartlett, P. A., MacKay, M. D. & Verseghy, D. L. Modified snow algorithms within the Canadian land floor scheme: mannequin runs and sensitivity evaluation at three boreal forest stands. Atmos. Ocean 44, 207–222 (2006).

    Article 

    Google Scholar
     

  • Dai, A. Temperature and strain dependence of the rain–snow section transition over land and ocean. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033295 (2008).

  • Ohmura, A. Bodily foundation for the temperature-based melt-index technique. J. Appl. Metorol. 40, 753–761 (2001).

    Article 

    Google Scholar
     

  • Rango, A. & Martinec, J. Revisiting the degree-day technique for snowmelt computations. J. Am. Water Resour. Assoc. 31, 657–669 (1995).

    Article 

    Google Scholar
     

  • Wake, L. M. & Marshall, S. J. Evaluation of present strategies of constructive degree-day calculation utilizing in situ observations from glaciated areas. J. Glaciol. 61, 329–344 (2015).

    Article 

    Google Scholar
     

  • Senese, A., Maugeri, M., Vuillermoz, E., Smiraglia, C. & Diolaiuti, G. Utilizing every day air temperature thresholds to judge snow melting prevalence and quantity on Alpine glaciers by T-index fashions: the case examine of the Forni Glacier (Italy). Cryosphere 8, 1921–1933 (2014).

    Article 

    Google Scholar
     

  • Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. Ok. & Arnold, J. G. Setting up retrospective gridded every day precipitation and temperature datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 47, 475–497 (2008).

    Article 

    Google Scholar
     

  • Matiu, M. et al. Snow cowl within the European Alps: station observations of snow depth and depth of snowfall. Zenodo https://doi.org/10.5281/zenodo.4064128 (2021).

  • Daly, C. et al. Physiographically delicate mapping of climatological temperature and precipitation throughout the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article 

    Google Scholar
     

  • von Arx, G., Crivellaro, A., Prendin, A. L., Cufar, Ok. & Carrer, M. Quantitative wooden anatomy—sensible tips. Entrance. Plant Sci. 7, 781 (2016).


    Google Scholar
     

  • Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Strategies for Plant Stem Evaluation (Kessel, 2013).

  • Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Relationship (Univ. of Chicago Press, 1968).

  • Holmes, R. L. Laptop-assisted high quality management in tree-ring relationship and measurement. Tree Ring Bull. 43, 69–78 (1983).


    Google Scholar
     

  • Melvin, T. M., Briffa, Ok. R., Nicolussi, Ok. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).

    Article 

    Google Scholar
     

  • Esper, J., Cook dinner, E. R., Krusic, P. J., Peters, Ok. & Schweingruber, F. H. Assessments of the RCS technique for preserving low-frequency variability in lengthy tree-ring chronologies. Tree-Ring Res. 59, 81–98 (2003).


    Google Scholar
     

  • Cook dinner, E. R., Briffa, Ok. R., Meko, D. M., Graybill, D. A. & Funkhouser, G. The ‘segment length curse’ in lengthy tree-ring chronology growth for palaeoclimatic research. Holocene 5, 229–237 (1995).

    Article 

    Google Scholar
     

  • Cook dinner, E. R., Briffa, Ok., Shiyatov, S., Mazepa, V. & Jones, P. D. in Strategies of Dendrochronology (eds Cook dinner, E. R. & Kairiukstis, L. A.) 97–162 (Kluwer, 1990).

  • McCarroll, D., Younger, G. H. & Loader, N. J. Measuring the talent of variance-scaled local weather reconstructions and a check for the seize of extremes. Holocene 25, 618–626 (2015).

    Article 

    Google Scholar
     

  • Buras, A., Zang, C. & Menzel, A. Testing the steadiness of switch features. Dendrochronologia 42, 56–62 (2017).

    Article 

    Google Scholar
     

  • Wilmking, M. et al. International evaluation of relationships between local weather and tree development. Glob. Change Biol. 26, 3212–3220 (2020).

    Article 

    Google Scholar
     

  • Carrer, M., Dibona, R., Prendin, A. L. & Brunetti, M. Latest waning snowpack within the Alps is unprecedented within the final six centuries: information. Zenodo https://doi.org/10.5281/zenodo.7330950; https://doi.org/10.5281/zenodo.7333328 (2022).

  • Citterio, M. et al. The fluctuations of italian glaciers over the past century: a contribution to information about alpine glacier adjustments. Geogr. Ann. Ser. A 89, 167–184 (2007).

    Article 

    Google Scholar
     

  • Senese, A. et al. Modelling shortwave and longwave downward radiation and air temperature driving ablation on the Forni Glacier (Stelvio Nationwide Park, Italy). Geogr. Fis. Din. Quat. 39, 89–100 (2016).


    Google Scholar
     

  • Zemp, M. et al. (eds) WSGS (2012): Fluctuations of Glaciers 2005–2010 Vol. X (World Glacier Monitoring Service, 2012).

  • Zemp, M. et al. (eds) WGMS (2013): Glacier Mass Stability (World Glacier Monitoring Service, 2013).

  • Zemp, M. et al. (eds) WGMS (2021): International Glacier Change (World Glacier Monitoring Service, 2021).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved