Beniston, M. et al. The European mountain cryosphere: a evaluate of its present state, tendencies, and future challenges. Cryosphere 12, 759–794 (2018).
Article
Google Scholar
Rodell, M. et al. Rising tendencies in world freshwater availability. Nature 557, 651–659 (2018).
Article
CAS
Google Scholar
Immerzeel, W. W. et al. Significance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Article
CAS
Google Scholar
Hock R. et al. in IPCC Particular Report on the Ocean and Cryosphere in a Altering Local weather (eds Pörtner, H. O. et al.) 131–202 (Cambridge Univ. Press, 2019).
Niittynen, P., Heikkinen, R. Ok. & Luoto, M. Snow cowl is a uncared for driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
Article
Google Scholar
Matiu, M. et al. Noticed snow depth tendencies within the European Alps: 1971 to 2019. Cryosphere 15, 1343–1382 (2021).
Article
Google Scholar
Auer, I. et al. HISTALP—historic instrumental climatological floor time sequence of the Higher Alpine Area. Int. J. Climatol. 27, 17–46 (2007).
Article
Google Scholar
Casty, C., Wanner, H., Luterbacher, J., Esper, J. & Böhm, R. Temperature and precipitation variability within the European Alps since 1500. Int. J. Climatol. 25, 1855–1880 (2005).
Article
Google Scholar
Cook dinner, E. R. et al. Outdated World megadroughts and pluvials through the Widespread Period. Sci. Adv. 1, e1500561 (2015).
Article
Google Scholar
Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. 5 hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim. Dynam. 26, 387–405 (2006).
Article
Google Scholar
Coppola, A., Leonelli, G., Salvatore, M. C., Pelfini, M. & Baroni, C. Tree-ring based mostly summer time imply temperature variations within the Adamello-Presanella Group (Italian Central Alps), 1610–2008 advert. Clim. Previous 9, 211–221 (2013).
Article
Google Scholar
Trachsel, M. et al. Multi-archive summer time temperature reconstruction for the European Alps, advert 1053–1996. Quat. Sci. Rev. 46, 66–79 (2012).
Article
Google Scholar
Büntgen, U., Esper, J., Frank, D. C., Nicolussi, Ok. & Schmidhalter, M. A 1052-year tree-ring proxy for Alpine summer time temperatures. Clim. Dynam. 25, 141–153 (2005).
Article
Google Scholar
Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer time temperature variations within the European Alps, A.D. 755–2004. J. Clim. 19, 5606–5623 (2006).
Article
Google Scholar
Corona, C. et al. Millennium-long summer time temperature variations within the European Alps as reconstructed from tree rings. Clim. Previous 6, 379–400 (2010).
Article
Google Scholar
Fritts, H. C. Tree Rings and Local weather (Tutorial Press, 1976).
Coulthard, B. L. et al. Snowpack alerts in North American tree rings. Environ. Res. Lett. 16, 034037 (2021).
Article
Google Scholar
Appleton, S. N. & St. George, S. Excessive-elevation mountain hemlock development as a surrogate for cool-season precipitation in Crater Lake Nationwide Park, USA. Dendrochronologia 52, 20–28 (2018).
Article
Google Scholar
Mercalli L. & Castellano C. Western Italian Alps Month-to-month Snowfall and Snow Cowl Period, Model 1 (NSIDC, 1999).
Valt, M. & Cianfarra, P. Latest snow cowl variability within the Italian Alps. Chilly Reg. Sci. Tech. 64, 146–157 (2010).
Article
Google Scholar
Beniston, M. Is snow within the Alps receding or disappearing? WIREs Clim. Change 3, 349–358 (2012).
Article
Google Scholar
Klein, G., Vitasse, Y., Rixen, C., Marty, C. & Rebetez, M. Shorter snow cowl period since 1970 within the Swiss Alps attributable to earlier snowmelt greater than to later snow onset. Clim. Change 139, 637–649 (2016).
Article
Google Scholar
Hüsler, F., Jonas, T., Riffler, M., Musial, J. P. & Wunderle, S. A satellite-based snow cowl climatology (1985–2011) for the European Alps derived from AVHRR information. Cryosphere 8, 73–90 (2014).
Article
Google Scholar
Notarnicola, C. Hotspots of snow cowl adjustments in world mountain areas over 2000–2018. Distant Sens. Environ. 243, 111781 (2020).
Article
Google Scholar
Körner, C. Alpine Treelines: Useful Ecology of the International Excessive Elevation Tree Limits (Springer, 2012).
Carrer, M., Pellizzari, E., Prendin, A. L., Pividori, M. & Brunetti, M. Winter precipitation—not summer time temperature—continues to be the primary driver for Alpine shrub development. Sci. Complete Environ. 682, 171–179 (2019).
Article
CAS
Google Scholar
Kotlarski, S. et al. twenty first century alpine local weather change. Clim. Dynam. https://doi.org/10.1007/s00382-022-06303-3 (2022).
Largeron, C. et al. Towards snow cowl estimation in mountainous areas utilizing fashionable information assimilation strategies: a evaluate. Entrance. Earth Sci. https://doi.org/10.3389/feart.2020.00325 (2020).
Carturan, L. et al. Reconstructing fluctuations of La Mare Glacier (Japanese Italian Alps) within the late holocene: new proof for a Little Ice Age most round 1600 advert. Geogr. Ann. Ser. A 96, 287–306 (2014).
Article
Google Scholar
Brázdil, R. et al. Droughts within the Czech Lands, 1090–2012 advert. Clim. Previous 9, 1985–2002 (2013).
Article
Google Scholar
Pfister, C., Rohr, C. & Jover, A. Euro-Climhist: eine Datenplattform der Universität Bern zur Witterungs-, Klima-und Katastrophengeschichte. Wasser Energie Luft 109, 45–48 (2017).
Pfister, C. & Wanner, H. Local weather and Society in Europe: The Final Thousand Years (Haupt, 2021).
Brugnara, Y. et al. December 1916: lethal wartime climate. Geogr. Bernensia G91, 8 (2016).
Google Scholar
Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equal on this planet’s mountains. WIREs Water 3, 461–474 (2016).
Article
Google Scholar
Fayad, A. et al. Snow hydrology in Mediterranean mountain areas: a evaluate. J. Hydrol. 551, 374–396 (2017).
Article
Google Scholar
Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century analysis of Sierra Nevada snowpack. Nat. Clim. Change 6, 2–3 (2015).
Article
Google Scholar
Beikircher, B. & Mayr, S. The hydraulic structure of Juniperus communis L. ssp. communis: shrubs and timber in contrast. Plant Cell Environ. 31, 1545–1556 (2008).
Article
Google Scholar
Pellizzari, E., Pividori, M. & Carrer, M. Winter precipitation impact in a mid-latitude temperature-limited surroundings: the case of frequent juniper at excessive elevation within the Alps. Environ. Res. Lett. 9, 104021 (2014).
Article
Google Scholar
Jones, H. G., Pomeroy, J. W., Walker, D. A. & Hoham, R. W. Snow Ecology: An Interdisciplinary Examination of Snow-Coated Ecosystems (Cambridge Univ. Press, 2001).
Trawöger, L. Satisfied, ambivalent or aggravated: Tyrolean ski tourism stakeholders and their perceptions of local weather change. Tour. Manag. 40, 338–351 (2014).
Article
Google Scholar
Morrison, C. & Pickering, C. M. Perceptions of local weather change impacts, adaptation and limits to adaption within the Australian Alps: the ski-tourism business and key stakeholders. J. Sust. Tour. 21, 173–191 (2013).
Article
Google Scholar
McCright, A. M., Dunlap, R. E. & Xiao, C. The impacts of temperature anomalies and political orientation on perceived winter warming. Nat. Clim. Change 4, 1077–1081 (2014).
Article
Google Scholar
Stoffel, M. & Corona, C. Future winters glimpsed within the Alps. Nat. Geosci. 11, 458–460 (2018).
Article
CAS
Google Scholar
Adams R. P. Junipers of the World: The Genus Juniperus (Trafford Publishing, 2014).
Marty, C., Schlögl, S., Bavay, M. & Lehning, M. How a lot can we save? Impression of various emission eventualities on future snow cowl within the Alps. Cryosphere 11, 517–529 (2017).
Article
Google Scholar
Wigley, T. M. L., Briffa, Ok. R. & Jones, P. D. On the common worth of correlated time sequence with functions in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteor. 23, 201–213 (1984).
Article
Google Scholar
Brigham, E. O. The Quick Fourier Rework and its Functions (Prentice-Corridor, 1988).
Brunetti, M., Maugeri, M., Monti, F. & Nannia, T. Temperature and precipitation variability in Italy within the final two centuries from homogenised instrumental time sequence. Int. J. Climatol. 26, 345–381 (2006).
Article
Google Scholar
Simolo, C., Brunetti, M., Maugeri, M. & Nanni, T. Evolution of maximum temperatures in a warming local weather. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048437 (2011).
Venema, V. Ok. C. et al. Benchmarking homogenization algorithms for month-to-month information. Clim. Previous 8, 89–115 (2012).
Article
Google Scholar
Auer, A. H. The rain versus snow threshold temperatures. Weatherwise https://doi.org/10.1080/00431672.1974.9931684 (1974).
Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gustafsson, D. Meteorological information helpful for the development of snow rain separation in floor based mostly fashions. Hydrology 2, 266–288 (2015).
Article
Google Scholar
Bartlett, P. A., MacKay, M. D. & Verseghy, D. L. Modified snow algorithms within the Canadian land floor scheme: mannequin runs and sensitivity evaluation at three boreal forest stands. Atmos. Ocean 44, 207–222 (2006).
Article
Google Scholar
Dai, A. Temperature and strain dependence of the rain–snow section transition over land and ocean. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033295 (2008).
Ohmura, A. Bodily foundation for the temperature-based melt-index technique. J. Appl. Metorol. 40, 753–761 (2001).
Article
Google Scholar
Rango, A. & Martinec, J. Revisiting the degree-day technique for snowmelt computations. J. Am. Water Resour. Assoc. 31, 657–669 (1995).
Article
Google Scholar
Wake, L. M. & Marshall, S. J. Evaluation of present strategies of constructive degree-day calculation utilizing in situ observations from glaciated areas. J. Glaciol. 61, 329–344 (2015).
Article
Google Scholar
Senese, A., Maugeri, M., Vuillermoz, E., Smiraglia, C. & Diolaiuti, G. Utilizing every day air temperature thresholds to judge snow melting prevalence and quantity on Alpine glaciers by T-index fashions: the case examine of the Forni Glacier (Italy). Cryosphere 8, 1921–1933 (2014).
Article
Google Scholar
Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. Ok. & Arnold, J. G. Setting up retrospective gridded every day precipitation and temperature datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 47, 475–497 (2008).
Article
Google Scholar
Matiu, M. et al. Snow cowl within the European Alps: station observations of snow depth and depth of snowfall. Zenodo https://doi.org/10.5281/zenodo.4064128 (2021).
Daly, C. et al. Physiographically delicate mapping of climatological temperature and precipitation throughout the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
Article
Google Scholar
von Arx, G., Crivellaro, A., Prendin, A. L., Cufar, Ok. & Carrer, M. Quantitative wooden anatomy—sensible tips. Entrance. Plant Sci. 7, 781 (2016).
Google Scholar
Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Strategies for Plant Stem Evaluation (Kessel, 2013).
Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Relationship (Univ. of Chicago Press, 1968).
Holmes, R. L. Laptop-assisted high quality management in tree-ring relationship and measurement. Tree Ring Bull. 43, 69–78 (1983).
Google Scholar
Melvin, T. M., Briffa, Ok. R., Nicolussi, Ok. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).
Article
Google Scholar
Esper, J., Cook dinner, E. R., Krusic, P. J., Peters, Ok. & Schweingruber, F. H. Assessments of the RCS technique for preserving low-frequency variability in lengthy tree-ring chronologies. Tree-Ring Res. 59, 81–98 (2003).
Google Scholar
Cook dinner, E. R., Briffa, Ok. R., Meko, D. M., Graybill, D. A. & Funkhouser, G. The ‘segment length curse’ in lengthy tree-ring chronology growth for palaeoclimatic research. Holocene 5, 229–237 (1995).
Article
Google Scholar
Cook dinner, E. R., Briffa, Ok., Shiyatov, S., Mazepa, V. & Jones, P. D. in Strategies of Dendrochronology (eds Cook dinner, E. R. & Kairiukstis, L. A.) 97–162 (Kluwer, 1990).
McCarroll, D., Younger, G. H. & Loader, N. J. Measuring the talent of variance-scaled local weather reconstructions and a check for the seize of extremes. Holocene 25, 618–626 (2015).
Article
Google Scholar
Buras, A., Zang, C. & Menzel, A. Testing the steadiness of switch features. Dendrochronologia 42, 56–62 (2017).
Article
Google Scholar
Wilmking, M. et al. International evaluation of relationships between local weather and tree development. Glob. Change Biol. 26, 3212–3220 (2020).
Article
Google Scholar
Carrer, M., Dibona, R., Prendin, A. L. & Brunetti, M. Latest waning snowpack within the Alps is unprecedented within the final six centuries: information. Zenodo https://doi.org/10.5281/zenodo.7330950; https://doi.org/10.5281/zenodo.7333328 (2022).
Citterio, M. et al. The fluctuations of italian glaciers over the past century: a contribution to information about alpine glacier adjustments. Geogr. Ann. Ser. A 89, 167–184 (2007).
Article
Google Scholar
Senese, A. et al. Modelling shortwave and longwave downward radiation and air temperature driving ablation on the Forni Glacier (Stelvio Nationwide Park, Italy). Geogr. Fis. Din. Quat. 39, 89–100 (2016).
Google Scholar
Zemp, M. et al. (eds) WSGS (2012): Fluctuations of Glaciers 2005–2010 Vol. X (World Glacier Monitoring Service, 2012).
Zemp, M. et al. (eds) WGMS (2013): Glacier Mass Stability (World Glacier Monitoring Service, 2013).
Zemp, M. et al. (eds) WGMS (2021): International Glacier Change (World Glacier Monitoring Service, 2021).