Matoza, R. S. et al. Atmospheric waves and world seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 377, 95–100 (2022).
World Sulfur Dioxide Monitoring Residence Web page (NASA, 2022); https://so2.gsfc.nasa.gov/
Hunga Tonga–Hunga Ha’apai (Smithsonian Establishment, 2022); https://volcano.si.edu/volcano.cfm?vn=243040
León, J. A. P. Monitoring the Atmospheric Impacts of the Hunga-Tonga Eruption (ECMWF, 2022); https://www.ecmwf.int/en/publication/171/information/monitoring-atmospheric-impacts-hunga-tonga-eruption
Millán, L. et al. The Hunga Tonga–Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett. 49, e2022GL099381 (2022).
Article
Google Scholar
Guo, S., Bluth, G., Rose, W., Watson, M. & Prata, A. Re-evaluation of SO2 launch of the 15 June 1991 Pinatubo eruption utilizing ultraviolet and infrared satellite tv for pc sensors. Geochem. Geophys. Geosys. https://doi.org/10.1029/2003GC000654 (2004).
Sellitto, P. et al. The surprising radiative impression of the Hunga Tonga eruption of January fifteenth, 2022. Commun. Earth. Environ. 3, 288 (2022).
Zhang, H. et al. Potential impression of Tonga volcano eruption on world imply floor air temperature. J. Meteorol. Res. 36, 1–5 (2022).
Article
Google Scholar
Zhu, Y. et al. Perturbations in stratospheric aerosol evolution as a result of water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ. 3, 248 (2022).
Article
Google Scholar
WMO Replace: 50:50 Likelihood of World Temperature Quickly Reaching 1.5 °C Threshold in Subsequent 5 Years (WMO, 2022); https://public.wmo.int/en/media/press-release/wmo-update-5050-chance-of-global-temperature-temporarily-reaching-15percentC2percentB0c-threshold
Hermanson, L. et al. WMO world annual to decadal local weather replace: a prediction for 2021–2025. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).
Article
Google Scholar
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gasoline concentrations and their extensions to 2500. Geosci. Mannequin Dev. 13, 3571–3605 (2020).
Article
CAS
Google Scholar
Boer, G. J. et al. The Decadal Local weather Prediction Venture (DCPP) contribution to CMIP6. Geosci. Mannequin Dev. 9, 3751–3777 (2016).
Article
Google Scholar
Edwards, J. M. & Slingo, A. Research with a versatile new radiation code. I: Selecting a configuration for a large-scale mannequin. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).
Article
Google Scholar
Manners, J., Edwards, J. M., Hill, P. & Thelen, J.-C. SOCRATES Technical Information Suite Of Group Radiative Switch Codes Primarily based on Edwards and Slingo (Univ. Leeds, 2017).
Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Article
Google Scholar
Zuo, M. et al. Volcanoes and local weather: sizing up the impression of the latest Hunga Tonga–Hunga Ha’apai volcanic eruption from a historic perspective. Adv. Atmos. Sci. 39, 986–1993 (2022).
Schoeberl, M. R. et al. Evaluation and impression of the Hunga Tonga–Hunga Ha’apai stratospheric water vapor plume. Geophys. Res. Lett. 49, e2022GL100248 (2022).
Smith, C. et al. in Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) Annex III (IPCC, Cambridge Univ. Press, 2021).
Leach, N. J. et al. FaIRv2.0.0: a generalized impulse response mannequin for local weather uncertainty and future state of affairs exploration. Geosci. Mannequin Dev. 14, 3007–3036 (2021).
Article
CAS
Google Scholar
IPCC: Abstract for Policymakers. In Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
ERA5 Month-to-month Averaged Information on Strain Ranges From 1979 to Current (Copernicus Local weather Change Service, 2019); https://doi.org/10.24381/CDS.6860A573
Copernicus Local weather Change Service. ERA5 month-to-month averaged knowledge on single ranges from 1979 to current (2019); https://doi.org/10.24381/CDS.F17050D7
Forster, P. M. et al. Suggestions for diagnosing efficient radiative forcing from local weather fashions for CMIP6. J. Geophys. Res. 121, 460–12,475 (2016).
Article
Google Scholar
Hansen, J. et al. Efficacy of local weather forcings. J. Geophys. Res. https://doi.org/10.1029/2005JD005776 (2005).
Myhre, G. et al. in Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2013).
Smith, C. et al. IPCC Working Group 1 (WG1) Sixth Evaluation Report (AR6) Annex III Prolonged Information (2021); https://doi.org/10.5281/zenodo.5705391
Jenkins, S., Smith, C., Allen, M. & Grainger, R. Code and knowledge for ‘Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C’. Zenodo https://doi.org/10.5281/zenodo.7319240 (2022).