Connect with us

Climate

Tonga eruption will increase probability of short-term floor temperature anomaly above 1.5 °C

Published

on


  • Matoza, R. S. et al. Atmospheric waves and world seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 377, 95–100 (2022).

  • World Sulfur Dioxide Monitoring Residence Web page (NASA, 2022); https://so2.gsfc.nasa.gov/

  • Hunga Tonga–Hunga Ha’apai (Smithsonian Establishment, 2022); https://volcano.si.edu/volcano.cfm?vn=243040

  • León, J. A. P. Monitoring the Atmospheric Impacts of the Hunga-Tonga Eruption (ECMWF, 2022); https://www.ecmwf.int/en/publication/171/information/monitoring-atmospheric-impacts-hunga-tonga-eruption

  • Millán, L. et al. The Hunga Tonga–Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett. 49, e2022GL099381 (2022).

    Article 

    Google Scholar
     

  • Guo, S., Bluth, G., Rose, W., Watson, M. & Prata, A. Re-evaluation of SO2 launch of the 15 June 1991 Pinatubo eruption utilizing ultraviolet and infrared satellite tv for pc sensors. Geochem. Geophys. Geosys. https://doi.org/10.1029/2003GC000654 (2004).

  • Sellitto, P. et al. The surprising radiative impression of the Hunga Tonga eruption of January fifteenth, 2022. Commun. Earth. Environ. 3, 288 (2022).

  • Zhang, H. et al. Potential impression of Tonga volcano eruption on world imply floor air temperature. J. Meteorol. Res. 36, 1–5 (2022).

    Article 

    Google Scholar
     

  • Zhu, Y. et al. Perturbations in stratospheric aerosol evolution as a result of water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ. 3, 248 (2022).

    Article 

    Google Scholar
     

  • WMO Replace: 50:50 Likelihood of World Temperature Quickly Reaching 1.5°C Threshold in Subsequent 5 Years (WMO, 2022); https://public.wmo.int/en/media/press-release/wmo-update-5050-chance-of-global-temperature-temporarily-reaching-15percentC2percentB0c-threshold

  • Hermanson, L. et al. WMO world annual to decadal local weather replace: a prediction for 2021–2025. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).

    Article 

    Google Scholar
     

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gasoline concentrations and their extensions to 2500. Geosci. Mannequin Dev. 13, 3571–3605 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boer, G. J. et al. The Decadal Local weather Prediction Venture (DCPP) contribution to CMIP6. Geosci. Mannequin Dev. 9, 3751–3777 (2016).

    Article 

    Google Scholar
     

  • Edwards, J. M. & Slingo, A. Research with a versatile new radiation code. I: Selecting a configuration for a large-scale mannequin. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    Article 

    Google Scholar
     

  • Manners, J., Edwards, J. M., Hill, P. & Thelen, J.-C. SOCRATES Technical Information Suite Of Group Radiative Switch Codes Primarily based on Edwards and Slingo (Univ. Leeds, 2017).

  • Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Zuo, M. et al. Volcanoes and local weather: sizing up the impression of the latest Hunga Tonga–Hunga Ha’apai volcanic eruption from a historic perspective. Adv. Atmos. Sci. 39, 986–1993 (2022).

  • Schoeberl, M. R. et al. Evaluation and impression of the Hunga Tonga–Hunga Ha’apai stratospheric water vapor plume. Geophys. Res. Lett. 49, e2022GL100248 (2022).

  • Smith, C. et al. in Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) Annex III (IPCC, Cambridge Univ. Press, 2021).

  • Leach, N. J. et al. FaIRv2.0.0: a generalized impulse response mannequin for local weather uncertainty and future state of affairs exploration. Geosci. Mannequin Dev. 14, 3007–3036 (2021).

    Article 
    CAS 

    Google Scholar
     

  • IPCC: Abstract for Policymakers. In Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • ERA5 Month-to-month Averaged Information on Strain Ranges From 1979 to Current (Copernicus Local weather Change Service, 2019); https://doi.org/10.24381/CDS.6860A573

  • Copernicus Local weather Change Service. ERA5 month-to-month averaged knowledge on single ranges from 1979 to current (2019); https://doi.org/10.24381/CDS.F17050D7

  • Forster, P. M. et al. Suggestions for diagnosing efficient radiative forcing from local weather fashions for CMIP6. J. Geophys. Res. 121, 460–12,475 (2016).

    Article 

    Google Scholar
     

  • Hansen, J. et al. Efficacy of local weather forcings. J. Geophys. Res. https://doi.org/10.1029/2005JD005776 (2005).

  • Myhre, G. et al. in Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2013).

  • Smith, C. et al. IPCC Working Group 1 (WG1) Sixth Evaluation Report (AR6) Annex III Prolonged Information (2021); https://doi.org/10.5281/zenodo.5705391

  • Jenkins, S., Smith, C., Allen, M. & Grainger, R. Code and knowledge for ‘Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C’. Zenodo https://doi.org/10.5281/zenodo.7319240 (2022).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved