Connect with us

Climate

Widespread spring phenology results on drought restoration of Northern Hemisphere ecosystems

Published

on


  • Choat, B. et al. Triggers of tree mortality beneath drought. Nature 558, 531–539 (2018).

    Article 
    CAS 

    Google Scholar
     

  • DeSoto, L. et al. Low development resilience to drought is said to future mortality danger in timber. Nat. Commun. 11, 545 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of world vulnerability to tree mortality and forest die-off from hotter drought within the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article 

    Google Scholar
     

  • Schwalm, C. R. et al. World patterns of drought restoration. Nature 548, 202–205 (2017).

    Article 
    CAS 

    Google Scholar
     

  • IPCC. Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Gazol, A. et al. Forest resilience to drought varies throughout biomes. Glob. Change Biol. 24, 2143–2158 (2018).

  • Wu, X. et al. Differentiating drought legacy results on vegetation development over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).

    Article 

    Google Scholar
     

  • Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle fashions. Science 349, 528–532 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience will increase forest sensitivity to excessive drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).

    Article 

    Google Scholar
     

  • Kannenberg, S. A. et al. Drought legacies are depending on water desk depth, wooden anatomy and drought timing throughout the jap US. Ecol. Lett. 22, 119–127 (2019).

    Article 

    Google Scholar
     

  • Lian, X. et al. Summer time soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article 

    Google Scholar
     

  • Piao, S. et al. Plant phenology and world local weather change: present progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Article 

    Google Scholar
     

  • Bastos, A. et al. Direct and seasonal legacy results of the 2018 warmth wave and drought on European ecosystem productiveness. Sci. Adv. 6, eaba2724 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buermann, W. et al. Widespread seasonal compensation results of spring warming on northern plant productiveness. Nature 562, 110–114 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lian, X. et al. Seasonal organic carryover dominates northern vegetation development. Nat. Commun. 12, 983 (2021).

  • Myneni, R. B. et al. Elevated plant development within the northern excessive latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, S. J. et al. Utility of satellite tv for pc solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and performance over northern excessive latitude forests. Distant Sens. Environ. 190, 178–187 (2017).

    Article 

    Google Scholar
     

  • Zeng, Z. et al. Legacy results of spring phenology on vegetation development beneath preseason meteorological drought within the Northern Hemisphere. Agric. Meteorol. 310, 108630 (2021).

    Article 

    Google Scholar
     

  • Kelsey, Okay. C. et al. Winter snow and spring temperature have differential results on vegetation phenology and productiveness throughout Arctic plant communities. Glob. Change Biol. 27, 1572–1586 (2021).

    Article 

    Google Scholar
     

  • Wang, X. et al. Disentangling the mechanisms behind winter snow influence on vegetation exercise in northern ecosystems. Glob. Change Biol. 24, 1651–1662 (2018).

    Article 

    Google Scholar
     

  • IPCC. Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time sequence. Distant Sens. 6, 6929–6960 (2014).

    Article 

    Google Scholar
     

  • Magney, T. S. et al. Mechanistic proof for monitoring the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Massive and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. Y. et al. World long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, L18402 (2011).

    Article 

    Google Scholar
     

  • Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter becoming, evapotranspiration fashions, instruments, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article 

    Google Scholar
     

  • Wolf, S. et al. Heat spring diminished carbon cycle influence of the 2012 US summer season drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    Article 
    CAS 

    Google Scholar
     

  • D’Andrea, E. et al. Unravelling resilience mechanisms in forests: position of non-structural carbohydrates in responding to excessive climate occasions. Tree Physiol. 41, 1808–1818 (2021).

    Article 

    Google Scholar
     

  • Yun, J. et al. Affect of winter precipitation on spring phenology in boreal forests. Glob. Change Biol. 24, 5176–5187 (2018).

    Article 

    Google Scholar
     

  • Xie, J. et al. Spring temperature and snow cowl climatology drive the superior springtime phenology (1991–2014) within the European Alps. J. Geophys. Res. Biogeosci. 126, e2020JG006150 (2021).

  • Xie, J. et al. Altitude-dependent affect of snow cowl on alpine land floor phenology. J. Geophys. Res. Biogeosci. 122, 1107–1122 (2017).

    Article 

    Google Scholar
     

  • Peng, S. et al. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. 16, 3004–3013 (2010).


    Google Scholar
     

  • Wu, X. et al. Uneven winter snow affect on tree development throughout temperate China. Glob. Change Biol. 25, 144–154 (2019).

    Article 

    Google Scholar
     

  • Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by hotter springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Musselman, Okay. N. et al. Winter soften traits portend widespread declines in snow water assets. Nat. Clim. Change 11, 418–424 (2021).

    Article 

    Google Scholar
     

  • Kreyling, J. Winter local weather change: a important issue for temperate vegetation efficiency. Ecology 91, 1939–1948 (2010).

    Article 

    Google Scholar
     

  • Bose, A. Okay. et al. Progress and resilience responses of Scots pine to excessive droughts throughout Europe depend upon predrought development circumstances. Glob. Change Biol. 26, 4521–4537 (2020).

    Article 

    Google Scholar
     

  • Martinez-Vilalta, J. et al. Hydraulic adjustment of Scots pine throughout Europe. New Phytol. 184, 353–364 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Klein, T. et al. Drought stress, development and nonstructural carbohydrate dynamics of pine timber in a semi-arid forest. Tree Physiol. 34, 981–992 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kannenberg, S. A. & Phillips, R. P. Non-structural carbohydrate swimming pools not linked to hydraulic methods or carbon provide in tree saplings throughout extreme drought and subsequent restoration. Tree Physiol. 40, 259–271 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Karst, J. et al. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).

    CAS 

    Google Scholar
     

  • Chitra-Tarak, R. et al. Hydraulically-vulnerable timber survive on deep-water entry throughout droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).

    Article 

    Google Scholar
     

  • Jiao, W. et al. Noticed growing water constraint on vegetation development over the past three a long time. Nat. Commun. 12, 3777 (2021).

  • Wu, X. et al. Larger temperature variability reduces temperature sensitivity of vegetation development in Northern Hemisphere. Geophys. Res. Lett. 44, 6173–6181 (2017).

    Article 

    Google Scholar
     

  • Anderegg, W. R. L. et al. Widespread drought-induced tree mortality at dry vary edges signifies that local weather stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).

    Article 

    Google Scholar
     

  • Martin-Benito, D. & Pederson, N. Convergence in drought stress, however a divergence of climatic drivers throughout a latitudinal gradient in a temperate broadleaf forest. J. Biogeogr. 42, 925–937 (2015).

    Article 

    Google Scholar
     

  • Tucker, C. J. et al. An prolonged AVHRR 8-km NDVI dataset appropriate with MODIS and SPOT vegetation NDVI information. Int. J. Distant Sens. 26, 4485–4498 (2005).

    Article 

    Google Scholar
     

  • Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales throughout world land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Divergent response of vegetation development to soil water availability in dry and moist intervals over Central Asia. J. Geophys. Res. Biogeosci. 126, e2020JG005912 (2021).

    Article 

    Google Scholar
     

  • Richardson, A. D. et al. Local weather change, phenology, and phenological management of vegetation feedbacks to the local weather system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article 

    Google Scholar
     

  • Piao, S. et al. Traits, drivers and feedbacks of world greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar
     

  • Liang, W. et al. Evaluation of spatial and temporal patterns of web major manufacturing and their local weather controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. A world spatially contiguous solar-induced fluorescence (CSIF) dataset utilizing neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jones, M. O. et al. Satellite tv for pc passive microwave distant sensing for monitoring world land floor phenology. Distant Sens. Environ. 115, 1102–1114 (2011).

    Article 

    Google Scholar
     

  • Konings, A. G. et al. Interannual variations of vegetation optical depth are attributable to each water stress and biomass modifications. Geophys. Res. Lett. 48, e2021GL095267 (2021).

    Article 

    Google Scholar
     

  • Du, J. et al. A world satellite tv for pc environmental information file derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Information 9, 791–808 (2017).

    Article 

    Google Scholar
     

  • Harris, I. et al. Up to date high-resolution grids of month-to-month climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar
     

  • Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer season photosynthetic exercise in northern terrestrial ecosystems between 1982 and 2011. Distant Sens. 6, 1390–1431 (2014).

    Article 

    Google Scholar
     

  • Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. I. A multiscalar drought index delicate to world warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar
     

  • Wieder, W. R. et al. Regridded Harmonized World Soil Database v1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247

  • Kottek, M. et al. World map of the Koppen–Geiger local weather classification up to date. Meteorol. Z. 15, 259–263 (2006).

    Article 

    Google Scholar
     

  • Jakubauskas, M. E., Legates, D. R. & Kastens, J. H. Harmonic evaluation of time-series AVHRR NDVI information. Photogramm. Eng. Distant Sens. 67, 461–470 (2001).


    Google Scholar
     

  • Liu, Q. et al. Temperature, precipitation, and insolation results on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Y. H. et al. Latest spring phenology shifts in western Central Europe based mostly on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).

    Article 

    Google Scholar
     

  • Jiang, P. et al. Enhanced development after excessive wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).

  • Delgado-Baquerizo, M. et al. Microbial variety drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

  • Pham, L. T. H. & Brabyn, L. Monitoring mangrove biomass change in Vietnam utilizing SPOT pictures and an object-based strategy mixed with machine studying algorithms. ISPRS J. Photogramm. Distant Sens. 128, 86–97 (2017).

    Article 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Study. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Li, Y. Code for ‘Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems’. GitHub https://github.com/leeyang1991/phenology-effects-on-drought-recovery (2022).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved