Connect with us

Climate

Pure hybridization reduces vulnerability to local weather change

Published

on


  • Ackerly, D. D. Neighborhood meeting, area of interest conservatism, and adaptive evolution in altering environments. Int. J. Plant Sci. 164, S165–S184 (2003).

    Article 

    Google Scholar
     

  • Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Basic evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hansen, M. M., Olivieri, I., Waller, D. M. & Nielsen, E. E. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21, 1311–1329 (2012).

    Article 

    Google Scholar
     

  • Aitken, S. N. & Whitlock, M. C. Assisted gene circulation to facilitate native adaptation to local weather change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

    Article 

    Google Scholar
     

  • Becker, M. et al. Hybridization might facilitate in situ survival of endemic species by means of durations of local weather change. Nat. Clim. Change 3, 1039–1043 (2013).

    Article 

    Google Scholar
     

  • Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. Ok. The issues with hybrids: setting conservation pointers. Traits Ecol. Evol. 16, 613–622 (2001).

    Article 

    Google Scholar
     

  • Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).

    Article 

    Google Scholar
     

  • Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary significance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).

    Article 

    Google Scholar
     

  • vonHoldt, B. M., Brzeski, Ok. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the function of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2018).

    Article 

    Google Scholar
     

  • Hamilton, J. A. & Miller, J. M. Adaptive introgression as a useful resource for administration and genetic conservation in a altering local weather. Conserv. Biol. 30, 33–41 (2016).

    Article 

    Google Scholar
     

  • Ralls, Ok., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: a critique of the proof helps maximizing genetic variety fairly than minimizing the introduction of putatively dangerous genetic variation. Biol. Conserv. 251, 108784 (2020).

    Article 

    Google Scholar
     

  • Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal) adaptation throughout present and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).

    Article 

    Google Scholar
     

  • Rellstab, C., Dauphin, B. & Exposito‐Alonso, M. Prospects and limitations of genomic offset in conservation administration. Evol. Appl. 14, 1202–1212 (2021).

    Article 

    Google Scholar
     

  • Bay, R. A. et al. Genomic indicators of choice predict climate-driven inhabitants declines in a migratory chicken. Science 359, 83–86 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rellstab, C. et al. Signatures of native adaptation in candidate genes of oaks (Quercus spp.) with respect to current and future weather conditions. Mol. Ecol. 25, 5907–5924 (2016).

    Article 

    Google Scholar
     

  • Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic panorama of present and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    Article 

    Google Scholar
     

  • Exposito-Alonso, M. et al. Genomic foundation and evolutionary potential for excessive drought adaptation in Arabidopsis thaliana. Nat. Ecol. Evol. 2, 352–358 (2018).

    Article 

    Google Scholar
     

  • Kindt, R. AlleleShift: an R bundle to foretell and visualize population-level adjustments in allele frequencies in response to local weather change. PeerJ 9, e11534 (2021).

    Article 

    Google Scholar
     

  • Achieve, C. & François, O. LEA 3: issue fashions in inhabitants genetics and ecological genomics with R. Mol. Ecol. Resour. 21, 2738–2748 (2020).

    Article 

    Google Scholar
     

  • Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to local weather change. Nat. Ecol. Evol. 5, 1350–1360 (2021).

    Article 

    Google Scholar
     

  • Taylor, S. A., Larson, E. L. & Harrison, R. G. Hybrid zones: home windows on local weather change. Traits Ecol. Evol. 30, 398–406 (2015).

    Article 

    Google Scholar
     

  • Hoffmann, A. A. & Sgro, C. M. Local weather change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article 
    CAS 

    Google Scholar
     

  • McGuigan, Ok., Franklin, C. E., Moritz, C. & Blows, M. W. Adaptation of rainbow fish to lake and stream habitats. Evolution 57, 104–118 (2003).


    Google Scholar
     

  • Smith, S., Bernatchez, L. & Beheregaray, L. RNA-seq evaluation reveals in depth transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14, 375 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Smith, S. et al. Latitudinal variation in local weather‐related genes imperils vary edge populations. Mol. Ecol. 29, 4337–4349 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sandoval-Castillo, J. et al. Adaptation of plasticity to projected most temperatures and throughout climatically outlined bioregions. Proc. Natl Acad. Sci. USA 117, 17112–17121 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brauer, C., Unmack, P. J., Smith, S., Bernatchez, L. & Beheregaray, L. B. On the roles of panorama heterogeneity and environmental variation in figuring out inhabitants genomic construction in a dendritic system. Mol. Ecol. 27, 3484–3497 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Attard, C. R. et al. Fish out of water: genomic insights into persistence of rainbowfish populations within the desert. Evolution 76, 171–183 (2022).

    Article 

    Google Scholar
     

  • Gates, Ok. et al. Environmental choice, fairly than impartial processes, greatest clarify patterns of variety in a tropical rainforest fish. Preprint at bioRxiv https://doi.org/10.1101/2022.1105.1113.491913 (2022).

    Article 

    Google Scholar
     

  • McCairns, R. J. S., Smith, S., Sasaki, M., Bernatchez, L. & Beheregaray, L. B. The adaptive potential of subtropical rainbowfish within the face of local weather change: heritability and heritable plasticity for the expression of candidate genes. Evol. Appl. 9, 531–545 (2016).

    Article 
    CAS 

    Google Scholar
     

  • McGuigan, Ok., Zhu, D., Allen, G. & Moritz, C. Phylogenetic relationships and historic biogeography of melanotaeniid fishes in Australia and New Guinea. Mar. Freshwat. Res. 51, 713–723 (2000).

    Article 

    Google Scholar
     

  • Unmack, P. J. et al. Malanda Gold: the story of a novel rainbowfish from the Atherton Tablelands, now on the verge of extinction. Fish. Sahul. 30, 1039–1054 (2016).


    Google Scholar
     

  • Moritz, C. Methods to guard organic variety and the evolutionary processes that maintain it. Syst. Biol. 51, 238–254 (2002).

    Article 

    Google Scholar
     

  • Pope, L., Estoup, A. & Moritz, C. Phylogeography and inhabitants construction of an ecotonal marsupial, Bettongia tropica, decided utilizing mtDNA and microsatellites. Mol. Ecol. 9, 2041–2053 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hugall, A., Moritz, C., Moussalli, A. & Stanisic, J. Reconciling paleodistribution fashions and comparative phylogeography within the Moist Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc. Natl Acad. Sci. USA 99, 6112–6117 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Moritz, C. et al. Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc. R. Soc. B. 276, 1235–1244 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Phillips, B. L., Baird, S. J. & Moritz, C. When vicars meet: a slim contact zone between morphologically cryptic phylogeographic lineages of the rainforest skink, Carlia rubrigularis. Evolution 58, 1536–1548 (2004).


    Google Scholar
     

  • Krosch, M. N., Baker, A. M., Mckie, B. G., Mather, P. B. & Cranston, P. S. Deeply divergent mitochondrial lineages reveal patterns of native endemism in chironomids of the Australian Moist Tropics. Austral Ecol. 34, 317–328 (2009).

    Article 

    Google Scholar
     

  • Williams, S. E., Bolitho, E. E. & Fox, S. Local weather change in Australian tropical rainforests: an impending environmental disaster. Proc. R. Soc. B. 270, 1887–1892 (2003).

    Article 

    Google Scholar
     

  • Whitehead, P. et al. Temporal improvement of the Atherton Basalt Province, north Queensland. Aust. J. Earth Sci. 54, 691–709 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Moy, Ok. G., Unmack, P. J., Lintermans, M., Duncan, R. P. & Brown, C. Limitations to hybridisation and their conservation implications for a extremely threatened Australian fish species. Ethology 125, 142–152 (2019).

    Article 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, Ok. Quick model-based estimation of ancestry in unrelated people. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Buerkle, C. A. Most‐probability estimation of a hybrid index primarily based on molecular markers. Mol. Ecol. Notes 5, 684–687 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, E. & Thompson, E. A model-based technique for figuring out species hybrids utilizing multilocus genetic knowledge. Genetics 160, 1217–1229 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Dorion, S. & Landry, J. Activation of the mitogen-activated protein kinase pathways by warmth shock. Cell Stress Chaperones 7, 200 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Blumstein, M. et al. Protocol for projecting allele frequency change below future local weather change at adaptive-associated loci. STAR Protoc. 1, 100061 (2020).

    Article 

    Google Scholar
     

  • Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation gas local weather change danger in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).

    Article 

    Google Scholar
     

  • Blumstein, M. et al. A brand new perspective on ecological prediction reveals limits to local weather adaptation in a temperate tree species. Curr. Biol. 30, 1447–1453. e1444 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Razgour, O. et al. Contemplating adaptive genetic variation in local weather change vulnerability evaluation reduces species vary loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Goicoechea, P. G. et al. Adaptive introgression promotes quick adaptation in oaks marginal populations. Preprint accessible at bioRxiv https://doi.org/10.1101/731919 (2019).

  • Lavergne, S. & Molofsky, J. Elevated genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).

    Article 
    CAS 

    Google Scholar
     

  • De Carvalho, D. et al. Admixture facilitates adaptation from standing variation within the European aspen (Populus tremula L.), a widespread forest tree. Mol. Ecol. 19, 1638–1650 (2010).

    Article 

    Google Scholar
     

  • De-Kayne, R. et al. Genomic structure of adaptive radiation and hybridization in Alpine whitefish. Nat. Commun. 13, 4479 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Baskett, M. L. & Gomulkiewicz, R. Introgressive hybridization as a mechanism for species rescue. Theor. Ecol. 4, 223–239 (2011).

    Article 

    Google Scholar
     

  • Meier, J. I. et al. The coincidence of ecological alternative with hybridization explains fast adaptive radiation in Lake Mweru cichlid fishes. Nat. Commun. 10, 1–11 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Svardal, H. et al. Ancestral hybridization facilitated species diversification within the Lake Malawi cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Proof for archaic adaptive introgression in people. Nat. Rev. Genet. 16, 359–371 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, C. et al. Admixture facilitates genetic diversifications to excessive altitude in Tibet. Nat. Commun. 5, 1–7 (2014).

    Article 

    Google Scholar
     

  • Nolte, A. W., Freyhof, J., Stemshorn, Ok. C. & Tautz, D. An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) within the Rhine with new habitat diversifications has originated from hybridization between outdated phylogeographic teams. Proc. R. Soc. B. 272, 2379–2387 (2005).

    Article 

    Google Scholar
     

  • Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y. & Keller, S. R. Experimental help for genomic prediction of local weather maladaptation utilizing the machine studying strategy Gradient Forests. Mol. Ecol. Resour. 21, 2749–2765 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, C., Cunningham, M. & Moritz, C. Comparative phylogeography and the historical past of endemic vertebrates within the Moist Tropics rainforests of Australia. Mol. Ecol. 7, 487–498 (1998).

    Article 

    Google Scholar
     

  • Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).

    Article 

    Google Scholar
     

  • Pfennig, Ok. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species vary enlargement. Proc. R. Soc. B. 283, 20161329 (2016).

    Article 

    Google Scholar
     

  • Soulé, M. E. What’s conservation biology? A brand new artificial self-discipline addresses the dynamics and issues of perturbed species, communities, and ecosystems. Bioscience 35, 727–734 (1985).


    Google Scholar
     

  • Biermann, C. & Havlick, D. Genetics and the query of purity in cutthroat trout restoration. Restor. Ecol. 29, e13516 (2021).

    Article 

    Google Scholar
     

  • Fredrickson, R. J. & Hedrick, P. W. Dynamics of hybridization and introgression in purple wolves and coyotes. Conserv. Biol. 20, 1272–1283 (2006).

    Article 

    Google Scholar
     

  • Hirashiki, C., Kareiva, P. & Marvier, M. Concern over hybridization dangers mustn’t preclude conservation interventions. Conserv. Sci. Pract. 3, e424 (2021).


    Google Scholar
     

  • Unmack, P. J., Allen, G. R. & Johnson, J. B. Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Mol. Phylogenet. Evol. 67, 15–27 (2013).

    Article 

    Google Scholar
     

  • Allen, G. Rainbowfishes in Nature and the Aquarium (Tetra Publications, 1995).

  • Seehausen, O. Hybridization and adaptive radiation. Traits Ecol. Evol. 19, 198–207 (2004).

    Article 

    Google Scholar
     

  • Pusey, B., Kennard, M. J. & Arthington, A. H. Freshwater Fishes of North-eastern Australia (CSIRO Publishing, 2004).

  • Zhu, D., Degnan, S. & Moritz, C. Evolutionary distinctiveness and standing of the endangered Lake Eacham rainbowfish (Melanotaenia eachamensis). Conserv. Biol. 12, 80–93 (1998).

    Article 

    Google Scholar
     

  • McGuigan, Ok., Chenoweth, S. F. & Blows, M. W. Phenotypic divergence alongside strains of genetic variance. Am. Nat. 165, 32–43 (2005).

    Article 

    Google Scholar
     

  • Sunnucks, P. & Hales, D. F. Quite a few transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Peterson, B., Weber, J., Kay, E., Fisher, H. & Hoekstra, H. Double digest RADseq: a reasonable technique for de novo SNP discovery and genotyping in mannequin and non-model species. PLoS ONE 7, e37135 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: constructing and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 1, 171–182 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357 (2012).

    Article 
    CAS 

    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping utilizing next-generation DNA sequencing knowledge. Nat. Genet. 43, 491–498 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 

    Google Scholar
     

  • Goudet, J. Hierfstat, a bundle for R to compute and check hierarchical F‐statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Article 

    Google Scholar
     

  • R Core Staff. R: A Language and Setting for Statistical Computing (R Basis for Statistical Computing, 2021).

  • Bailey, R. ribailey/gghybrid: gghybrid R bundle for Bayesian hybrid index and genomic cline estimation. v2.0.0 https://doi.org/10.5281/zenodo.3676498 (2020).

  • Wringe, B. hybriddetective: automates the method of detecting hybrids from genetic knowledge. R bundle model 0.1.0.9000 https://github.com/bwringe/hybriddetective (2016).

  • Pickrell, J. Ok. & Pritchard, J. Ok. Inference of inhabitants splits and mixtures from genome-wide allele frequency knowledge. PLoS Genet. 8, e1002967 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Malinsky, M., Matschiner, M. & Svardal, H. Dsuite‐Quick D‐statistics and associated admixture proof from VCF recordsdata. Mol. Ecol. Resour. 21, 584–595 (2021).

    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a instrument set for whole-genome affiliation and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Inexperienced, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for historical admixture between intently associated populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Malinsky, M. et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493–1498 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at excessive decision for the earth’s land floor areas. Sci. Information 4, 1–20 (2017).

    Article 

    Google Scholar
     

  • Karger, D. N. et al. CHELSA climatologies at excessive decision for the Earth’s land floor areas (v.1.0). https://doi.org/10.1594/WDCC/CHELSA_v1 (2016).

  • Ackerley, D. & Dommenget, D. Ambiance-only GCM (ACCESS1.0) simulations with prescribed land floor temperatures. Geosci. Mannequin Dev. 9, 2077–2098 (2016).

    Article 

    Google Scholar
     

  • Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim: excessive spatial decision paleoclimate surfaces for international land areas. Sci. Information 5, 1–9 (2018).

    Article 

    Google Scholar
     

  • Fordham, D. A. et al. PaleoView: a instrument for producing steady local weather projections spanning the final 21,000 years at regional and international scales. Ecography 40, 1348–1358 (2017).

    Article 

    Google Scholar
     

  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article 

    Google Scholar
     

  • Lemus-Canovas, M., Lopez-Bustins, J. A., Martin-Vide, J. & Royé, D. synoptReg: an R bundle for computing a synoptic local weather classification and a spatial regionalization of environmental knowledge. Environ. Mannequin. Softw. 118, 114–119 (2019).

    Article 

    Google Scholar
     

  • Hao, T., Elith, J., Guillera‐Arroita, G. & Lahoz‐Monfort, J. J. A overview of proof about use and efficiency of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839–852 (2019).

    Article 

    Google Scholar
     

  • Galpern, P., Peres‐Neto, P. R., Polfus, J. & Manseau, M. MEMGENE: spatial sample detection in genetic distance knowledge. Strategies Ecol. Evol. 5, 1116–1120 (2014).

    Article 

    Google Scholar
     

  • Peres‐Neto, P. R. & Galpern, P. memgene: spatial sample detection in genetic distance knowledge utilizing Moran’s eigenvector maps. R bundle model 1.0.1 https://cran.r-project.org/net/packages/memgene/ (2019).

  • Oksanen, J. et al. vegan: group ecology bundle. R bundle model 2.3–0 https://cran.r-project.org/net/packages/vegan/ (2015).

  • Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of native adaptation in heterogeneous landscapes. Mol. Ecol. 25, 104–120 (2015).

    Article 

    Google Scholar
     

  • Cingolani, P. et al. A program for annotating and predicting the results of single nucleotide polymorphisms, SnpEff: SNPs within the genome of Drosophila melanogaster pressure w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and useful characterization of user-uploaded gene/measurement units. Nucleic Acids Res. 49, D605–D612 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brauer, C. J. et al. Information for ‘Natural hybridisation reduces vulnerability to climate change’. figshare https://doi.org/10.6084/m9.figshare.21692918 (2022).

  • Brauer, C. J. et al. Code for ‘Natural hybridisation reduces vulnerability to climate change’. GitHub https://github.com/pygmyperch/NER (2022).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved