Connect with us

Climate

Socio-political feasibility of coal energy phase-out and its function in mitigation pathways

Published

on


  • Hendryx, M. et al. Impacts of coal use on well being. Annu. Rev. Publ. Well being 41, 397–415 (2020).

    Article 

    Google Scholar
     

  • Spencer, T. et al. The 1.5 °C goal and coal sector transition: on the limits of societal feasibility. Clim. Coverage 18, 335–351 (2017).

    Article 

    Google Scholar
     

  • World Power Balances 2019: Abstract Power Balances (IEA, 2019); https://doi.org/10.5257/iea/net/2019

  • Clarke, L. et al. in Local weather Change 2014: Mitigation of Local weather Change. Working Group III Contribution to the IPCC Fifth Evaluation Report (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2015).

  • Gilabert, P. & Lawford-Smith, H. Political feasibility: a conceptual exploration. Polit. Stud. 60, 809–825 (2012).

    Article 

    Google Scholar
     

  • Geels, F. W. Regime resistance in opposition to low-carbon transitions: Introducing politics and energy into the multi-level perspective. Theor. Cult. Soc. 31, 21–40 (2014).

    Article 

    Google Scholar
     

  • Wilson, C. & Grubler, A. Classes from the historical past of technological change for clear power situations and insurance policies. Nat. Resour. Discussion board 35, 165–184 (2011).

    Article 

    Google Scholar
     

  • Johnson, N. et al. Stranded on a low-carbon planet: implications of local weather coverage for the phase-out of coal-based energy crops. Technol. Forecast. Soc. Change 90, 89–102 (2015).

    Article 

    Google Scholar
     

  • Seto, Okay. C. et al. Carbon lock-in: varieties, causes, and coverage implications. Annu. Rev. Environ. Resour. 41, 425–452 (2016).

    Article 

    Google Scholar
     

  • Unruh, G. C. Understanding carbon lock-in. Power Pol. 28, 817–830 (2000).

    Article 

    Google Scholar
     

  • Loftus, P. J. et al. A essential assessment of worldwide decarbonization situations: what do they inform us about feasibility? Wiley Interdiscip. Rev. Clim. Change 6, 93–112 (2015).

    Article 

    Google Scholar
     

  • van Sluisveld, M. A. E. et al. Evaluating future patterns of power system change in 2 °C situations with traditionally noticed charges of change. Glob. Environ. Change 35, 436–449 (2015).

    Article 

    Google Scholar
     

  • Napp, T. et al. Exploring the feasibility of low-carbon situations utilizing historic power transitions evaluation. Energies 10, 116 (2017).

    Article 

    Google Scholar
     

  • Vinichenko, V. et al. Historic precedents and feasibility of fast coal and fuel decline required for the 1.5 °C goal. One Earth 4, 1477–1490 (2021).

    Article 

    Google Scholar
     

  • Jewell, J. & Cherp, A. On the political feasibility of local weather change mitigation pathways: Is it too late to maintain warming beneath 1.5C? Wiley Interdiscip. Rev. Clim. Change 11, 621 (2020).

    Article 

    Google Scholar
     

  • Jewell, J. et al. Prospects for powering previous coal. Nat. Clim. Chang. 9, 592–597 (2019).

    Article 

    Google Scholar
     

  • Le Quéré, C. et al. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Chang. 9, 213–217 (2019).

  • Mehta, U. S. et al. In Pursuit of a Low Fossil Power Future: Interrogating Social, Political and Financial Drivers and Boundaries in India’s Power Transition (Friedrich Ebert Stiftung, 2017); https://www.fes-asia.org/information/in-pursuit-of-a-low-fossil-energy-future/

  • Lamb, W. F. & Minx, J. C. The political economic system of nationwide local weather coverage: architectures of constraint and a typology of nations. Power Res. Soc. Sci. 64, 101429 (2020).

    Article 

    Google Scholar
     

  • Grübler, A. et al. Dynamics of power applied sciences and world change. Power Coverage 27, 247–280 (1999).

    Article 

    Google Scholar
     

  • Grubler, A. Power transitions analysis: insights and cautionary tales. Power Coverage 50, 8–16 (2012).

    Article 

    Google Scholar
     

  • Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Coverage 31, 1257–1274 (2002).

    Article 

    Google Scholar
     

  • The Finish of Coal is in Sight (Powering Previous Coal Alliance, 2022); https://poweringpastcoal.org/

  • Fleurbaey, M. et al. in Local weather Change 2014: Mitigation of Local weather Change. Working Group III Contribution to the IPCC Fifth Evaluation Report (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2015).

  • Arbelaez, J. P. & Marzolf, N. C. Energy & Risk: The Power Sector in Jamaica (InterAmerican Growth Financial institution, 2010); https://publications.iadb.org/publications/english/doc/Energy-and-Risk-The-Power-Sector-in-Jamaica.pdf

  • Keppo, I. et al. Exploring the chance house: taking inventory of the varied capabilities and gaps in built-in evaluation fashions. Environ. Res. Lett. 16, 053006 (2021).

    Article 

    Google Scholar
     

  • Pye, S. et al. Modelling ‘Leadership-Driven’ Situations of the World Mitigation Effort (UCL Power Institute, 2019); https://www.theccc.org.uk/publication/modelling-leadership-driven-scenarios-of-theglobal-mitigation-effort-ucl-energy-institute/

  • Bi, S. et al. Dynamic analysis of coverage feasibility, feedbacks and the ambitions of COALitions. Nat. Clim. Chang. https://doi.org/10.21203/rs.3.rs-827021/v1 (2023).

  • van Beek, L. et al. Anticipating futures via fashions: the rise of Built-in Evaluation Modelling within the local weather science-policy interface since 1970. Glob. Environ. Change 65, 102191 (2020).

    Article 

    Google Scholar
     

  • Local weather Change Minister Claire Perry Launches Powering Previous Coal Alliance at COP23 (PPCA, 2017); https://www.poweringpastcoal.org/information/PPCA-news/Powering-Previous-Coal-Alliance-launched-COP23

  • Blondeel, M. et al. Shifting past coal: exploring and explaining the Powering Previous Coal Alliance. Power Res. Soc. Sci. 59, 101304 (2020).

    Article 

    Google Scholar
     

  • Low, S. & Schäfer, S. Is bio-energy carbon seize and storage (BECCS) possible? The contested authority of built-in evaluation modeling. Power Res. Soc. Sci. 60, 101326 (2020).

    Article 

    Google Scholar
     

  • Grant, N. et al. The coverage implications of an unsure carbon dioxide removing potential. Joule 5, 2593–2605 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Iyer, G. Diffusion of low-carbon applied sciences and the feasibility of long-term local weather targets. Technol. Forecast. Soc. Change 90, 103–118 (2015).

    Article 

    Google Scholar
     

  • Gambhir, A. et al. Assessing the feasibility of worldwide long-term mitigation situations. Energies 10, 89 (2017).

    Article 

    Google Scholar
     

  • Li, F. G. N. & McDowall, W. Transparency and high quality in modelling power transitions. In Proc. eighth Worldwide Sustainability Transitions Convention (IST 2017) (Chalmers College of Know-how, CIIST and STRN, 2017); https://www5.shocklogic.com/scripts/jmevent/programme.php?client_Id=KONGRESS&project_Id=17361

  • Keepin, B. & Wynne, B. Technical evaluation of IIASA power situations. Nature 312, 691–695 (1984).

    Article 

    Google Scholar
     

  • Patterson, J. J. et al. Political feasibility of 1.5˚C societal transformations: the function of social justice. Curr. Opin. Environ. Maintain. 31, 1–9 (2018).

    Article 

    Google Scholar
     

  • Dooley, Okay. et al. Co-producing local weather coverage and damaging emissions: trade-offs for sustainable land-use. Glob. Maintain. 1, e3 (2018).

    Article 

    Google Scholar
     

  • Ellenbeck, S. & Lilliestam, J. How modelers assemble power prices: discursive components in Power System and Built-in Evaluation Fashions. Power Res. Soc. Sci. 47, 69–77 (2019).

    Article 

    Google Scholar
     

  • Stoddard, I. et al. Three many years of local weather mitigation: why haven’t we bent the worldwide emissions curve? Annu. Rev. Environ. Resour. 46, 653–689 (2021).

    Article 

    Google Scholar
     

  • DeCarolis, J. et al. Formalizing greatest observe for power system optimization modelling. Appl. Power 194, 184–198 (2017).

    Article 

    Google Scholar
     

  • World coal to wash energy transition assertion. In UN Local weather Change Convention UK 2021 (COP26) (UK Authorities and United Nations Local weather Change, 2021); https://ukcop26.org/global-coal-to-clean-power-transition-statement/

  • Welsby, D. et al. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Erickson, P. et al. Why fossil gasoline producer subsidies matter. Nature 578, E1–E4 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Biomass in a Low-Carbon Economic system (CCC, 2018); https://www.theccc.org.uk/publication/biomass-in-a-low-carbon-economy/

  • Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, Okay. A brand new state of affairs useful resource for built-in 1.5 °C analysis. Nat. Clim. Chang. 8, 1027–1030 (2018).

    Article 

    Google Scholar
     

  • Fuss, S. et al. Adverse emissions—half 2: prices, potentials and unwanted side effects. Environ. Res. Lett. 13, 063002 (2018).

    Article 

    Google Scholar
     

  • Creutzig, F. et al. Bioenergy and local weather change mitigation: an evaluation. Glob. Change Biol. Bioenergy 7, 916–944 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Built-in Evaluation of World Environmental Change with IMAGE 3.0: Mannequin Description and Coverage Functions (PBL, 2014); https://www.pbl.nl/en/publications/integrated-assessment-of-global-environmental-change-with-IMAGE-3.0

  • Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road state of affairs for the twenty first century. Glob. Environ. Change 42, 251–267 (2017).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. Situations in direction of limiting world imply temperature enhance beneath 1.5 °C. Nat. Clim. Chang. 8, 325–332 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Marchetti, C. & Nakicenovic, N. The Dynamics of Power Methods and the Logistic Substitution Mannequin (IIASA, 1979); http://pure.iiasa.ac.at/id/eprint/1024/

  • IPCC. Particular Report on World Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • Muttitt, G., Value, J., Pye, S. & Welsby, D. Mannequin and outcomes information from socio-political feasibility of coal energy phaseout and its function in mitigation pathways. Zenodo https://doi.org/10.5281/zenodo.7313951 (2022).

  • The Built-in MARKAL-EFOM System (TIMES) – a bottom-up optimization mannequin for energy-environment programs. GitHub https://github.com/etsap-TIMES/TIMES_model (2022).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved