Connect with us

Climate

Experimental warming results in convergent succession of grassland archaeal neighborhood

Published

on


  • Woese, C. R., Kandler, O. & Wheelis, M. L. In direction of a pure system of organisms: proposal for the domains Archaea, Micro organism, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Hedlund, B. P., Zhang, C., Wang, F., Rinke, C. & Martin, W. F. Editorial: ecology, metabolism and evolution of archaea-perspectives from Proceedings of the Worldwide Workshop on Geo-Omics of Archaea. Entrance. Microbiol. 12, 827229 (2021).

    Article 

    Google Scholar
     

  • DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Fuhrman, J. A., McCallum, Ok. & Davis, A. A. Novel main archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

    Article 
    CAS 

    Google Scholar
     

  • DeLong, E. F. Exploring marine planktonic archaea: then and now. Entrance. Microbiol. 11, 616086 (2021).

    Article 

    Google Scholar
     

  • Karimi, B. et al. Biogeography of soil micro organism and archaea throughout France. Sci. Adv. 4, eaat1808 (2018).

    Article 

    Google Scholar
     

  • Tahon, G., Geesink, P. & Ettema, T. J. G. Increasing archaeal variety and phylogeny: previous, current, and future. Annu. Rev. Microbiol. 75, 359–381 (2021).

    Article 

    Google Scholar
     

  • Baker, B. J. et al. Range, ecology and evolution of Archaea. Nat. Microbiol. 5, 887–900 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Needham, D. M. & Fuhrman, J. A. Pronounced each day succession of phytoplankton, archaea and micro organism following a spring bloom. Nat. Microbiol. 1, 16005 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shu, W. S. & Huang, L. N. Microbial variety in excessive environments. Nat. Rev. Microbiol. 20, 219–235 (2021).

    Article 

    Google Scholar
     

  • Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The rising tree of Archaea: new views on their variety, evolution and ecology. ISME J. 11, 2407–2425 (2017).

    Article 

    Google Scholar
     

  • Zaremba-Niedzwiedzka, Ok. et al. Asgard archaea illuminate the origin of eukaryotic mobile complexity. Nature 541, 353–358 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Imachi, H. et al. Isolation of an archaeon on the prokaryote-eukaryote interface. Nature 577, 519–525 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Expanded variety of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Angel, R., Soares, M. I., Ungar, E. D. & Gillor, O. Biogeography of soil archaea and micro organism alongside a steep precipitation gradient. ISME J. 4, 553–563 (2010).

    Article 

    Google Scholar
     

  • Auguet, J. C., Barberan, A. & Casamayor, E. O. International ecological patterns in uncultured Archaea. ISME J. 4, 182–190 (2010).

    Article 

    Google Scholar
     

  • Bates, S. T. et al. Analyzing the worldwide distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Leininger, S. et al. Archaea predominate amongst ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Danovaro, R., Rastelli, E., Corinaldesi, C., Tangherlini, M. & Dell’Anno, A. Marine archaea and archaeal viruses below international change. F1000Research 6, 1241 (2017).

    Article 

    Google Scholar
     

  • Goberna, M., Garcia, C., Insam, H., Hernandez, M. T. & Verdu, M. Burning fire-prone Mediterranean shrublands: instant modifications in soil microbial neighborhood construction and ecosystem features. Microb. Ecol. 64, 242–255 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gschwendtner, S. et al. Local weather change induces shifts in abundance and exercise sample of micro organism and archaea catalyzing main transformation steps in nitrogen turnover in a soil from a mid-European beech forest. PLoS ONE 9, e114278 (2014).

    Article 

    Google Scholar
     

  • Hayden, H. L. et al. Modifications within the microbial neighborhood construction of micro organism, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ. Microbiol. 14, 3081–3096 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Local weather warming results in divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).

    Article 

    Google Scholar
     

  • Guo, X. et al. Local weather warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).

    Article 

    Google Scholar
     

  • Wu, L. et al. Discount of microbial variety in grassland soil is pushed by long-term local weather warming. Nat. Microbiol. 7, 1054–1062 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. M. et al. Local weather warming enhances microbial community complexity and stability. Nat. Clim. Change 11, 343–348 (2021).

    Article 

    Google Scholar
     

  • Cavicchioli, R. Archaea–timeline of the third area. Nat. Rev. Microbiol. 9, 51–61 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Prach, Ok. & Walker, L. R. 4 alternatives for research of ecological succession. Traits Ecol. Evol. 26, 119–123 (2011).

    Article 

    Google Scholar
     

  • Xu, X., Sherry, R. A., Niu, S. L., Li, D. J. & Luo, Y. Q. Internet major productiveness and rain-use effectivity as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).

    Article 

    Google Scholar
     

  • Kerou, M., Alves, R. J. E. & Schleper, C. in Bergey’s Handbook of Systematics of Archaea and Micro organism (eds Trujillo, M. E. et al.) https://doi.org/10.1002/9781118960608.obm00124 (John Wiley & Sons, 2018).

  • Nkamga, V. D. & Drancourt, M. in Bergey’s Handbook of Systematics of Archaea and Micro organism (eds Trujillo, M. E. et al.) https://doi.org/10.1002/9781118960608.gbm01365 (John Wiley & Sons, 2016).

  • Zhou, J. et al. Excessive-throughput metagenomic applied sciences for advanced microbial neighborhood evaluation: open and closed codecs. mBio 6, e02288-14 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Random sampling course of results in overestimation of beta-diversity of microbial communities. mBio 4, e00324-13 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Xue, Ok. et al. Tundra soil carbon is weak to speedy microbial decomposition below local weather warming. Nat. Clim. Change 6, 595–600 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pecl, G. T. et al. Biodiversity redistribution below local weather change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 

    Google Scholar
     

  • Cardinale, B. J. et al. Biodiversity loss and its affect on humanity. Nature 486, 59–67 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, D., Miller, J. E. D. & Harrison, S. Local weather drives lack of phylogenetic variety in a grassland neighborhood. Proc. Natl Acad. Sci. USA 116, 19989–19994 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fei, S. et al. Divergence of species responses to local weather change. Sci. Adv. 3, e1603055 (2017).

    Article 

    Google Scholar
     

  • Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the consequences of local weather change on crops throughout the tree of life. Sci. Adv. 5, eaav2539 (2019).

    Article 

    Google Scholar
     

  • Kerou, M. et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and diversifications of archaeal ammonia oxidizers. Proc. Natl Acad. Sci. USA 113, E7937–E7946 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic variations between ammonia-oxidizing exercise of archaea and micro organism. ISME J. 11, 896–908 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z. et al. Useful gene array-based ultrasensitive and quantitative detection of microbial populations in advanced communities. mSystems 4, e00296-19 (2019).

    Article 

    Google Scholar
     

  • Ning, D. L. et al. A quantitative framework reveals ecological drivers of grassland microbial neighborhood meeting in response to warming. Nat. Commun. 11, 4717 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Modifications in meeting processes of soil microbial communities throughout secondary succession in two subtropical forests. Soil Biol. Biochem. 154, 108144 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia focus determines differential progress of ammonia-oxidising archaea and micro organism in soil microcosms. ISME J. 5, 1067–1071 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Gene-informed decomposition mannequin predicts decrease soil carbon loss because of persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frank, D. A. & McNaughton, S. J. Aboveground biomass estimation with the cover intercept methodology: a plant progress type caveat. Oikos 57, 57–60 (1990).

  • Sherry, R. A. et al. Lagged results of experimental warming and doubled precipitation on annual and seasonal aboveground biomass manufacturing in a tallgrass prairie. Glob. Change Biol. 14, 2923–2936 (2008).

    Article 

    Google Scholar
     

  • Zhou, J. Z. et al. Microbial mediation of carbon-cycle feedbacks to local weather warming. Nat. Clim. Change 2, 106–110 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).


    Google Scholar
     

  • Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA restoration from soils of various composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for sturdy environmental microbial neighborhood evaluation. BMC Microbiol. 15, 125 (2015).

    Article 

    Google Scholar
     

  • Caporaso, J. G. et al. Extremely-high-throughput microbial neighborhood evaluation on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, M. T. & Giovannoni, S. J. Bias attributable to template annealing within the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Takai, Ok. & Horikoshi, Ok. Speedy detection and quantification of members of the archaeal neighborhood by quantitative PCR utilizing fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000).

    Article 

    Google Scholar
     

  • Porat, I. et al. Characterization of archaeal neighborhood in contaminated and uncontaminated floor stream sediments. Microb. Ecol. 60, 784–795 (2010).

    Article 

    Google Scholar
     

  • Francis, C. A., Roberts, Ok. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and variety of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Peiffer, J. A. et al. Range and heritability of the maize rhizosphere microbiome below discipline circumstances. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Giardine, B. et al. Galaxy: a platform for interactive large-scale genome evaluation. Genome Res. 15, 1451–1455 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kong, Y. Btrim: a quick, light-weight adapter and high quality trimming program for next-generation sequencing applied sciences. Genomics 98, 152–153 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Magoc, T. & Salzberg, S. L. FLASH: quick size adjustment of brief reads to enhance genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Edgar, R. C. UPARSE: extremely correct OTU sequences from microbial amplicon reads. Nat. Strategies 10, 996–998 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME permits evaluation of high-throughput neighborhood sequencing knowledge. Nat. Strategies 7, 335–336 (2010).

    Article 
    CAS 

    Google Scholar
     

  • DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench suitable with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for speedy project of rRNA sequences into the brand new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint obtainable at bioRxiv https://doi.org/10.1101/081257 (2016).

  • Callahan, B. J. et al. DADA2: high-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Amir, A. et al. Deblur quickly resolves single-nucleotide neighborhood sequence patterns. mSystems 2, e00191-16 (2017).

    Article 

    Google Scholar
     

  • Kembel, S. W. et al. Picante: R instruments for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sievers, F. et al. Quick, scalable technology of high-quality protein a number of sequence alignments utilizing Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article 

    Google Scholar
     

  • Value, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–roughly maximum-likelihood bushes for big alignments. PLoS ONE 5, e9490 (2010).

    Article 

    Google Scholar
     

  • Munoz, R. et al. Launch LTPs104 of the All-Species Dwelling Tree. Syst. Appl. Microbiol. 34, 169–170 (2011).

    Article 

    Google Scholar
     

  • Oksanen, J. et al. Bundle ‘vegan’. Group Ecology Bundle, Model 2.9, 1–295 (The R Undertaking for Statistical Computing, 2013).

  • Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).

    Article 

    Google Scholar
     

  • Nakagawa, S. & Schielzeth, H. A basic and easy methodology for acquiring R2 from generalized linear mixed-effects fashions. Strategies Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar
     

  • Martiny, J. B., Eisen, J. A., Penn, Ok., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend upon spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Andrews, S. FastQC: A High quality Management Device for Excessive Throughput Sequence Knowledge (Babraham Bioinformatics, 2010).

  • Li, W. & Godzik, A. Cd-hit: a quick program for clustering and evaluating massive units of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Patel, R. Ok. & Jain, M. NGS QC Toolkit: a toolkit for high quality management of subsequent technology sequencing knowledge. PLoS ONE 7, e30619 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. Z. & Ning, D. L. Stochastic neighborhood meeting: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002-17 (2017).

    Article 

    Google Scholar
     

  • Jaumot, J., Bedia, C. & Tauler, R. Knowledge Evaluation for Omic Sciences: Strategies and Functions (Elsevier, 2018).

  • Thevenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Evaluation of the human grownup urinary metabolome variations with age, physique mass index, and gender by implementing a complete workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved