Climate
Coastal vegetation and estuaries are collectively a greenhouse gasoline sink
Published
1 week agoon
By
admin
IPCC Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Tian, H. et al. The terrestrial biosphere as a web supply of greenhouse gases to the ambiance. Nature 531, 225–228 (2016).
Raymond, P. A. et al. World carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
Zheng, Y. et al. World methane and nitrous oxide emissions from inland waters and estuaries. Glob. Chang. Biol. 28, 4713–4725 (2022).
Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the worldwide carbon cycle. Nature 603, 401–410 (2022).
Abril, G. & Borges, A. V. Concepts and views: carbon leaks from flooded land: do we have to replumb the inland water lively pipe? Biogeosciences 16, 769–784 (2019).
Cai, W.-J. Estuarine and coastal ocean carbon paradox: CO2 sinks or websites of terrestrial carbon incineration? Ann. Rev. Mar. Sci. 3, 123–145 (2011).
Bauer, J. E. et al. The altering carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).
Chen, C. T. A. et al. Air–sea exchanges of CO2 on this planet’s coastal seas. Biogeosciences 10, 6509–6544 (2013).
Laruelle, G. G. et al. World multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).
Macreadie, P. I. et al. Blue carbon as a pure local weather resolution. Nat. Rev. Earth Environ. 2, 826–839 (2021).
Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. Ok. The potential for ocean-based local weather motion: detrimental emissions applied sciences and past. Entrance. Clim. 2, 575716 (2021).
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985 (2018).
Oreska, M. P. J. et al. The greenhouse gasoline offset potential from seagrass restoration. Sci. Rep. 10, 7325 (2020).
Rosentreter, J. A., Al‐Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).
Williamson, P. & Gattuso, J. Carbon removing utilizing coastal blue carbon ecosystems is unsure and unreliable, with questionable climatic cost-effectiveness. Entrance. Clim. 4, 853666 (2022).
Rosentreter, J. A. et al. Half of world methane emissions come from extremely variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).
Al‐Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. 26, 2988–3005 (2020).
Borges, A. V. & Abril, G. in Treatise on Estuarine and Coastal Science Vol. 5 119–161 (Elsevier, 2011).
Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701 (2016).
Murray, R., Erler, D., Rosentreter, J., Maher, D. & Eyre, B. A seasonal supply and sink of nitrous oxide in mangroves: insights from focus, isotope, and isotopomer measurements. Geochim. Cosmochim. Acta 238, 169–192 (2018).
De Wilde, H. P. J. & De Bie, M. J. M. Nitrous oxide within the Schelde estuary: manufacturing by nitrification and emission to the ambiance. Mar. Chem. 69, 203–216 (2000).
Murray, R. H., Erler, D. V. & Eyre, B. D. Nitrous oxide fluxes in estuarine environments: response to world change. Glob. Change Biol. 21, 3219–3245 (2015).
Kroeze, C., Dumont, E. & Seitzinger, S.Future developments in emissions of N2O from rivers and estuaries. J. Integr. Environ. Sci. 7, 71–78 (2010).
Maavara, T. et al. Nitrous oxide emissions from inland waters: are IPCC estimates too excessive? Glob. Change Biol. 25, 473–488 (2019).
Ciais, P. et al. Definitions and strategies to estimate regional land carbon fluxes for the second section of the REgional Carbon Cycle Evaluation and Processes Challenge (RECCAP-2). Geosci. Mannequin Dev. 15, 1289–1316 (2020).
Bunting, P. et al. The World Mangrove Watch—a brand new 2010 world baseline of mangrove extent. Distant Sens. 10, 1669 (2018).
Mcowen, C. et al. A worldwide map of saltmarshes (v6.1). Biodivers. Information J. 5, e11764 (2017).
Quick, F. T. World Distribution of Seagrasses (Model 6.0). Sixth Replace to the Information Layer Utilized in Inexperienced and Quick (2003). (UN Setting Programme World Conservation Monitoring Centre, 2017); https://information.unep-wcmc.org/datasets/7
Laruelle, G. G., Rosentreter, J. A. & Regnier P. Extrapolation based mostly regionalized re-evaluation of the worldwide estuarine floor space. Preprint at Earth ArXiv https://doi.org/10.31223/X5X664 (2023).
Dürr, H. H. et al. Worldwide typology of nearshore coastal techniques: defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34, 441–458 (2011).
Woodwell, G. M., Wealthy, P. H. & Corridor, C. A. S. in Carbon and the Biosphere (eds Woodwell, G. M. & Pecan, E. V.) 221–240 (Technical Data Middle, United States Atomic Power Fee & Nationwide Technical Data Service, 1973).
Stewart, B. T., Santos, I. R., Tait, D. R., Macklin, P. A. & Maher, D. T. Submarine groundwater discharge and related fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated through radium isotopes. Mar. Chem. 174, 1–12 (2015).
Borges, A. V. et al. Variability of the gasoline switch velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27, 593–603 (2004).
Frankignoulle, M. Carbon dioxide emission from European estuaries. Science 282, 434–436 (1998).
Regnier, P. et al. Modelling estuarine biogeochemical dynamics: from the native to the worldwide scale. Aquat. Geochem. 19, 591–626 (2013).
Lovelock, C. E. & Reef, R. Variable impacts of local weather change on blue carbon. One Earth 3, 195–211 (2020).
Alongi, D. M. Carbon biking and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).
Alongi, D. M. Carbon steadiness in salt marsh and mangrove ecosystems: a worldwide synthesis. J. Mar. Sci. Eng. 8, 767 (2020).
Bange, H. W., Bartell, U. H., Rapsomanikis, S. & Andreae, M. O. Methane within the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob. Biogeochem. Cycles 8, 465–480 (1994).
Gelesh, L., Marshall, Ok., Boicourt, W. & Lapham, L. Methane concentrations enhance in backside waters throughout summertime anoxia within the extremely eutrophic estuary, Chesapeake Bay, U.S.A. Limnol. Oceanogr. 61, S253–S266 (2016).
Koné, Y. J. M., Abril, G., Delille, B. & Borges, A. V. Seasonal variability of methane within the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100, 21–37 (2010).
Donato, D. C. et al. Mangroves among the many most carbon-rich forests within the tropics. Nat. Geosci. 4, 293–297 (2011).
Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyre, B. D. Groundwater-derived dissolved inorganic and natural carbon exports from a mangrove tidal creek: the lacking mangrove carbon sink? Limnol. Oceanogr. 58, 475–488 (2013).
Rao, G. D. & Sarma, V. V. S. S. Variability in concentrations and fluxes of methane within the Indian estuaries. Estuaries Coasts 39, 1639–1650 (2016).
Bange, H. W., Rapsomanikis, S. & Andreae, M. O. The Aegean Sea as a supply of atmospheric nitrous oxide and methane. Mar. Chem. 53, 41–49 (1996).
Chmura, G. L., Kellman, L., van Ardenne, L. & Guntenspergen, G. R. Greenhouse gasoline fluxes from salt marshes uncovered to power nutrient enrichment. PLoS ONE 11, e0149937 (2016).
Dausse, A. et al. Biogeochemical functioning of grazed estuarine tidal marshes alongside a salinity gradient. Estuar. Coast. Shelf Sci. 100, 83–92 (2012).
Chen, J., Wells, N. S., Erler, D. V. & Eyre, B. D. Land‐use depth will increase benthic N2O emissions throughout three sub‐tropical estuaries. J. Geophys. Res. Biogeosciences 127, e2022JG006899 (2022).
Murray, N. J. et al. Excessive-resolution mapping of losses and positive factors of Earth’s tidal wetlands. Science 376, 744–749 (2022).
Shields, M. R. et al. Carbon storage within the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 10, 846–851 (2017).
Gillies, S., Ward, B., & Petersen, A. S. Rasterio. GitHub https://github.com/mapbox/rasterio (2013).
Jordahl, Ok. et al. Geopandas/geopandas: v0.8.1. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).
Mayorga, E. et al. World Nutrient Export from WaterSheds 2 (NEWS 2): mannequin growth and implementation. Environ. Mannequin. Softw. 25, 837–853 (2010).
Forster, et al. in Local weather Change 2021: The Bodily Science Foundation (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).
R Core Growth Group. R: A Language and Setting for Statistical Computing (R Basis for Statistical Computing, 2020).


Hobbled by Paperwork, a German R&D Program Falls In need of Local weather-Pleasant Targets

Quantum sensors may detect house particles from its gravitational pull

How Dangerous Are Fuel Range Pollution, Actually?

Utilizing Fossils to Deliver the LA River Again to Life

Vanuatu gathers help for UN local weather justice assertion

Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
Trending
-
Climate5 months ago
Utilizing Fossils to Deliver the LA River Again to Life
-
Climate3 months ago
Vanuatu gathers help for UN local weather justice assertion
-
Climate3 months ago
Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
-
Climate4 months ago
South African President Declares ‘State of Disaster’ Over Energy Disaster
-
Climate4 months ago
A Lawsuit In opposition to Massive Oil Will get Private
-
Biodiversity6 months ago
4 issues we’ve found from tagging Indonesia’s mantas
-
Climate4 months ago
I Need to Swap to an Electrical Range. Can the Board Cease Me?
-
Environment4 months ago
Earthquakes counsel Earth’s core has began spinning extra slowly
Leave a Reply