Climate
Very short-lived halogens amplify ozone depletion tendencies within the tropical decrease stratosphere
Published
1 week agoon
By
admin
Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Giant losses of whole ozone in Antarctica reveal seasonal ClOx/NOx interplay. Nature 315, 207–210 (1985).
Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).
Solomon, S. Stratospheric ozone depletion: a assessment of ideas and historical past. Rev. Geophys. 37, 275–316 (1999).
Scientific Evaluation of Ozone Depletion: 2018, World Ozone Analysis and Monitoring Mission. Report No. 58, 588 (World Meteorological Group, 2018).
Chipperfield, M. P. et al. On the reason for current variations in decrease stratospheric ozone. Geophys. Res. Lett. 45, 5718–5726 (2018).
Petropavlovskikh, I. et al. SPARC/IO3C/GAW Report on Lengthy-term Ozone Tendencies and Uncertainties within the Stratosphere. Report No. 9, WCRP-17/2018, GAW Report No. 241 (SPARC/IO3C/GAW, 2019); https://doi.org/10.17874/f899e57a20b
Solomon, S. et al. Emergence of therapeutic within the Antarctic ozone layer. Science 353, 269–274 (2016).
Godin-Beekmann, S. et al. Up to date tendencies of the stratospheric ozone vertical distribution within the 60° S–60° N latitude vary primarily based on the LOTUS regression mannequin. Atmos. Chem. Phys. 22, 11657–11673 (2022).
Ball, W. T. et al. Proof for a steady decline in decrease stratospheric ozone offsetting ozone layer restoration. Atmos. Chem. Phys. 18, 1379–1394 (2018).
Engel, A. et al. Replace on Ozone-Depleting Substances (ODSs) and Different Gases of Curiosity to the Montreal Protocol, Chapter 1 in Scientific Evaluation of Ozone Depletion: 2018, World Ozone Analysis and Monitoring Mission. Report No. 58 (World Meteorological Group, 2018).
Iglesias-Suarez, F. et al. Key drivers of ozone change and its radiative forcing over the twenty first century. Atmos. Chem. Phys. 18, 6121–6139 (2018).
Butchart, N. The Brewer–Dobson circulation. Rev. Geophys. 52, 157–184 (2014).
Karpechko, A. Y. et al. Stratospheric Ozone Modifications and Local weather. Scientific Evaluation of Ozone Depletion: 2018 (World Meteorological Group, 2019).
Newman, P. A. & McKenzie, R. UV impacts averted by the Montreal Protocol. Photochem. Photobiol. Sci. 10, 1152–1160 (2011).
Bais, A. F. et al. Ozone–local weather interactions and results on photo voltaic ultraviolet radiation. Photochem. Photobiol. Sci. 18, 602–640 (2019).
Riese, M. et al. Affect of uncertainties in atmospheric mixing on simulated UTLS composition and associated radiative results. J. Geophys. Res. Atmos. 117, 1–10 (2012).
Salawitch, R. J. et al. Sensitivity of ozone to bromine within the decrease stratosphere. Geophys. Res. Lett. 32, 1–5 (2005).
Hossaini, R. et al. Effectivity of short-lived halogens at influencing local weather by way of depletion of stratospheric ozone. Nat. Geosci. 8, 186–190 (2015).
Saiz-Lopez, A. et al. Injection of iodine to the stratosphere. Geophys. Res. Lett. 42, 6852–6859 (2015).
Fernandez, R. P., Kinnison, D. E., Lamarque, J. F., Tilmes, S. & Saiz-Lopez, A. Affect of biogenic very short-lived bromine on the Antarctic ozone gap throughout the twenty first century. Atmos. Chem. Phys. 17, 1673–1688 (2017).
Hossaini, R. et al. Development in stratospheric chlorine from short-lived chemical compounds not managed by the Montreal Protocol. Geophys. Res. Lett. 42, 4573–4580 (2015).
Carpenter, L. J. & Liss, P. S. On temperate sources of bromoform and different reactive natural bromine gases. J. Geophys. Res. Atmos. 105, 20539–20547 (2000).
Salawitch, R. J. Biogenic bromine. Nature 439, 275–277 (2006).
Aschmann, J., Sinnhuber, B.-M., Chipperfield, M. P. & Hossaini, R. Affect of deep convection and dehydration on bromine loading within the higher troposphere and decrease stratosphere. Atmos. Chem. Phys. 11, 2671–2687 (2011).
Fernandez, R. P. et al. Intercomparison between surrogate, express, and full remedies of VSL bromine chemistry throughout the CAM-Chem Chemistry–Local weather Mannequin. Geophys. Res. Lett. 48, 1–10 (2021).
Claxton, T. et al. A synthesis inversion to constrain world emissions of two very quick lived chlorocarbons: dichloromethane, and perchloroethylene. J. Geophys. Res. Atmos. 125, e2019JD031818 (2020).
Hossaini, R. et al. Latest tendencies in stratospheric chlorine from very short-lived substances. J. Geophys. Res. Atmos. 124, 2318–2335 (2019).
An, M. et al. Fast improve in dichloromethane emissions from China inferred by way of atmospheric observations. Nat. Commun. 12, 7279 (2021).
Fang, X. et al. Fast improve in ozone-depleting chloroform emissions from China. Nat. Geosci. 12, 89–93 (2019).
Daniel, J. S., Solomon, S., Portmann, R. W. & Garcia, R. R. Stratospheric ozone destruction: the significance of bromine relative to chlorine. J. Geophys. Res. Atmos. 104, 23871–23880 (1999).
Koenig, T. Ok. et al. Quantitative detection of iodine within the stratosphere. Proc. Natl Acad. Sci. USA 117, 1860–1866 (2020).
Solomon, S., Garcia, R. R. & Ravishankara, A. R. On the function of iodine in ozone depletion. J. Geophys. Res. 99, 491–499 (1994).
Karagodin-Doyennel, A. et al. Iodine chemistry within the chemistry–local weather mannequin SOCOL-AERv2-I. Geosci. Mannequin Dev. 14, 6623–6645 (2021).
Cuevas, C. A. et al. The affect of iodine on the Antarctic stratospheric ozone gap. Proc. Natl Acad. Sci. USA 119, 1–10 (2022).
Klobas, J. E., Hansen, J., Weisenstein, D. Ok., Kennedy, R. P. & Wilmouth, D. M. Sensitivity of iodine-mediated stratospheric ozone loss chemistry to future chemistry–local weather situations. Entrance. Earth Sci. 9, 1–12 (2021).
Falk, S. et al. Brominated VSLS and their affect on ozone beneath a altering local weather. Atmos. Chem. Phys. 17, 11313–11329 (2017).
Ball, W. T. et al. Stratospheric ozone tendencies for 1985–2018: sensitivity to current giant variability. Atmos. Chem. Phys. 19, 12731–12748 (2019).
Tilmes, S. et al. Illustration of the Group Earth System Mannequin (CESM1) CAM4-chem throughout the Chemistry–Local weather Mannequin Initiative (CCMI). Geosci. Mannequin Dev. 9, 1853–1890 (2016).
Ball, W. T. et al. Reconciling variations in stratospheric ozone composites. Atmos. Chem. Phys. 17, 12269–12302 (2017).
McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating idea in earth science. Science 314, 1740–1745 (2006).
Calvo, N., Garcia, R. R., Randel, W. J. & Marsh, D. R. Dynamical mechanism for the rise in tropical upwelling within the lowermost tropical stratosphere throughout heat ENSO occasions. J. Atmos. Sci. 67, 2331–2340 (2010).
Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).
Diallo, M. et al. Response of stratospheric water vapor and ozone to the weird timing of El Niño and the QBO disruption in 2015–2016. Atmos. Chem. Phys. 18, 13055–13073 (2018).
Jonsson, A. I., de Grandpre, J., Fomichev, V. I., McConnell, J. C. & Beagley, S. R. Doubled CO2-induced cooling within the center ambiance: photochemical evaluation of the ozone radiative suggestions. J. Geophys. Res. Atmos. 109, D24103 (2004).
Dietmüller, S., Garny, H., Eichinger, R. & Ball, W. Evaluation of current lower-stratospheric ozone tendencies in chemistry local weather fashions. Atmos. Chem. Phys. 21, 6811–6837 (2021).
van Vuuren, D. P. et al. The consultant focus pathways: an summary. Clim. Change 109, 5–31 (2011).
Iglesias-Suarez, F. et al. Pure halogens buffer tropospheric ozone in a altering local weather. Nat. Clim. Change 10, 147–154 (2020).
Iglesias-Suarez, F., Younger, P. J. & Wild, O. Stratospheric ozone change and associated local weather impacts over 1850–2100 as modelled by the ACCMIP ensemble. Atmos. Chem. Phys. 16, 343–363 (2016).
Eyring, V. et al. Sensitivity of twenty first century stratospheric ozone to greenhouse fuel situations. Geophys. Res. Lett. 37, L16807 (2010).
Ball, W. T., Chiodo, G., Abalos, M., Alsing, J. & Stenke, A. Inconsistencies between chemistry–local weather fashions and noticed decrease stratospheric ozone tendencies since 1998. Atmos. Chem. Phys. 20, 9737–9752 (2020).
Lamarque, J. F. et al. CAM-chem: description and analysis of interactive atmospheric chemistry within the Group Earth System Mannequin. Geosci. Mannequin Dev. 5, 369–411 (2012).
Neale, R. B. et al. The imply local weather of the Group Environment Mannequin (CAM4) in pressured SST and absolutely coupled experiments. J. Clim. 26, 5150–5168 (2013).
Saiz-Lopez, A. et al. Estimating the local weather significance of halogen-driven ozone loss within the tropical marine troposphere. Atmos. Chem. Phys. 12, 3939–3949 (2012).
Saiz-Lopez, A. et al. Iodine chemistry within the troposphere and its impact on ozone. Atmos. Chem. Phys. 14, 13119–13143 (2014).
Fernandez, R. P., Salawitch, R. J., Kinnison, D. E., Lamarque, J. F. & Saiz-Lopez, A. Bromine partitioning within the tropical tropopause layer: implications for stratospheric injection. Atmos. Chem. Phys. 14, 13391–13410 (2014).
Ordóñez, C. et al. Bromine and iodine chemistry in a world chemistry–local weather mannequin: description and analysis of very short-lived oceanic sources. Atmos. Chem. Phys. 12, 1423–1447 (2012).
Ziska, F., Quack, B., Tegtmeier, S., Stemmler, I. & Krüger, Ok. Future emissions of marine halogenated very-short lived substances beneath local weather change. J. Atmos. Chem. 74, 245–260 (2017).
Ziska, F. et al. World sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmos. Chem. Phys. 13, 8915–8934 (2013).
Maas, J. et al. Simulations of anthropogenic bromoform point out excessive emissions on the coast of East Asia. Atmos. Chem. Phys. 21, 4103–4121 (2021).
Hossaini, R. et al. The growing menace to stratospheric ozone from dichloromethane. Nat. Commun. 8, 15962 (2017).
Prados-Roman, C. et al. A unfavorable suggestions between anthropogenic ozone air pollution and enhanced ocean emissions of iodine. Atmos. Chem. Phys. 15, 2215–2224 (2015).
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A brand new sea floor temperature and sea ice boundary dataset for the Group Environment Mannequin. J. Clim. 21, 5145–5153 (2008).
Orbe, C. et al. Tropospheric transport variations between fashions utilizing the identical large-scale meteorological fields. Geophys. Res. Lett. 44, 1068–1078 (2017).
Chrysanthou, A. et al. The impact of atmospheric nudging on the stratospheric residual circulation in chemistry–local weather fashions. Atmos. Chem. Phys. 19, 11559–11586 (2019).
Davis, N. A. et al. A complete evaluation of tropical stratospheric upwelling within the specified dynamics Group Earth System Mannequin 1.2.2—Entire Environment Group Local weather Mannequin (CESM (WACCM)). Geosci. Mannequin Dev. 13, 717–734 (2020).
Davis, N. A., Callaghan, P., Simpson, I. R. & Tilmes, S. Specified dynamics scheme impacts on wave-mean circulation dynamics, convection, and tracer transport in CESM2 (WACCM6). Atmos. Chem. Phys. 22, 197–214 (2022).
Meinshausen, M. et al. The RCP greenhouse fuel concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
Alsing, J. & Ball, W. BASIC composite ozone time-series knowledge, model 3. Mendeley Knowledge https://doi.org/10.17632/2mgx2xzzpk.3 (2019).
Villamayor, J. et al. Dataset for very short-lived halogens amplify current and future ozone depletion tendencies within the tropical decrease stratosphere – Villamayor et al., 2023 – NCC, model 1. Mendeley Knowledge https://doi.org/10.17632/bmjnwmdd2s.1 (2023).


Ovarian most cancers take a look at might detect illness sooner than present strategies

Addressing increasing issues over forest carbon credit key to mitigation success

Tin Can assessment: Repair your escape pod on this unbelievable online game

Utilizing Fossils to Deliver the LA River Again to Life

Vanuatu gathers help for UN local weather justice assertion

Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
Trending
-
Climate6 months ago
Utilizing Fossils to Deliver the LA River Again to Life
-
Climate3 months ago
Vanuatu gathers help for UN local weather justice assertion
-
Climate4 months ago
Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
-
Climate4 months ago
South African President Declares ‘State of Disaster’ Over Energy Disaster
-
Climate4 months ago
A Lawsuit In opposition to Massive Oil Will get Private
-
Biodiversity6 months ago
4 issues we’ve found from tagging Indonesia’s mantas
-
Climate4 months ago
I Need to Swap to an Electrical Range. Can the Board Cease Me?
-
Environment4 months ago
Earthquakes counsel Earth’s core has began spinning extra slowly
Leave a Reply