Connect with us

Climate

Very short-lived halogens amplify ozone depletion tendencies within the tropical decrease stratosphere

Published

on


  • Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Giant losses of whole ozone in Antarctica reveal seasonal ClOx/NOx interplay. Nature 315, 207–210 (1985).

    CAS 

    Google Scholar
     

  • Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    CAS 

    Google Scholar
     

  • Solomon, S. Stratospheric ozone depletion: a assessment of ideas and historical past. Rev. Geophys. 37, 275–316 (1999).

    CAS 

    Google Scholar
     

  • Scientific Evaluation of Ozone Depletion: 2018, World Ozone Analysis and Monitoring Mission. Report No. 58, 588 (World Meteorological Group, 2018).

  • Chipperfield, M. P. et al. On the reason for current variations in decrease stratospheric ozone. Geophys. Res. Lett. 45, 5718–5726 (2018).


    Google Scholar
     

  • Petropavlovskikh, I. et al. SPARC/IO3C/GAW Report on Lengthy-term Ozone Tendencies and Uncertainties within the Stratosphere. Report No. 9, WCRP-17/2018, GAW Report No. 241 (SPARC/IO3C/GAW, 2019); https://doi.org/10.17874/f899e57a20b

  • Solomon, S. et al. Emergence of therapeutic within the Antarctic ozone layer. Science 353, 269–274 (2016).

    CAS 

    Google Scholar
     

  • Godin-Beekmann, S. et al. Up to date tendencies of the stratospheric ozone vertical distribution within the 60° S–60° N latitude vary primarily based on the LOTUS regression mannequin. Atmos. Chem. Phys. 22, 11657–11673 (2022).

    CAS 

    Google Scholar
     

  • Ball, W. T. et al. Proof for a steady decline in decrease stratospheric ozone offsetting ozone layer restoration. Atmos. Chem. Phys. 18, 1379–1394 (2018).

    CAS 

    Google Scholar
     

  • Engel, A. et al. Replace on Ozone-Depleting Substances (ODSs) and Different Gases of Curiosity to the Montreal Protocol, Chapter 1 in Scientific Evaluation of Ozone Depletion: 2018, World Ozone Analysis and Monitoring Mission. Report No. 58 (World Meteorological Group, 2018).

  • Iglesias-Suarez, F. et al. Key drivers of ozone change and its radiative forcing over the twenty first century. Atmos. Chem. Phys. 18, 6121–6139 (2018).

    CAS 

    Google Scholar
     

  • Butchart, N. The Brewer–Dobson circulation. Rev. Geophys. 52, 157–184 (2014).


    Google Scholar
     

  • Karpechko, A. Y. et al. Stratospheric Ozone Modifications and Local weather. Scientific Evaluation of Ozone Depletion: 2018 (World Meteorological Group, 2019).

  • Newman, P. A. & McKenzie, R. UV impacts averted by the Montreal Protocol. Photochem. Photobiol. Sci. 10, 1152–1160 (2011).

    CAS 

    Google Scholar
     

  • Bais, A. F. et al. Ozone–local weather interactions and results on photo voltaic ultraviolet radiation. Photochem. Photobiol. Sci. 18, 602–640 (2019).

    CAS 

    Google Scholar
     

  • Riese, M. et al. Affect of uncertainties in atmospheric mixing on simulated UTLS composition and associated radiative results. J. Geophys. Res. Atmos. 117, 1–10 (2012).


    Google Scholar
     

  • Salawitch, R. J. et al. Sensitivity of ozone to bromine within the decrease stratosphere. Geophys. Res. Lett. 32, 1–5 (2005).


    Google Scholar
     

  • Hossaini, R. et al. Effectivity of short-lived halogens at influencing local weather by way of depletion of stratospheric ozone. Nat. Geosci. 8, 186–190 (2015).

    CAS 

    Google Scholar
     

  • Saiz-Lopez, A. et al. Injection of iodine to the stratosphere. Geophys. Res. Lett. 42, 6852–6859 (2015).

    CAS 

    Google Scholar
     

  • Fernandez, R. P., Kinnison, D. E., Lamarque, J. F., Tilmes, S. & Saiz-Lopez, A. Affect of biogenic very short-lived bromine on the Antarctic ozone gap throughout the twenty first century. Atmos. Chem. Phys. 17, 1673–1688 (2017).

    CAS 

    Google Scholar
     

  • Hossaini, R. et al. Development in stratospheric chlorine from short-lived chemical compounds not managed by the Montreal Protocol. Geophys. Res. Lett. 42, 4573–4580 (2015).

    CAS 

    Google Scholar
     

  • Carpenter, L. J. & Liss, P. S. On temperate sources of bromoform and different reactive natural bromine gases. J. Geophys. Res. Atmos. 105, 20539–20547 (2000).

    CAS 

    Google Scholar
     

  • Salawitch, R. J. Biogenic bromine. Nature 439, 275–277 (2006).

    CAS 

    Google Scholar
     

  • Aschmann, J., Sinnhuber, B.-M., Chipperfield, M. P. & Hossaini, R. Affect of deep convection and dehydration on bromine loading within the higher troposphere and decrease stratosphere. Atmos. Chem. Phys. 11, 2671–2687 (2011).

    CAS 

    Google Scholar
     

  • Fernandez, R. P. et al. Intercomparison between surrogate, express, and full remedies of VSL bromine chemistry throughout the CAM-Chem Chemistry–Local weather Mannequin. Geophys. Res. Lett. 48, 1–10 (2021).


    Google Scholar
     

  • Claxton, T. et al. A synthesis inversion to constrain world emissions of two very quick lived chlorocarbons: dichloromethane, and perchloroethylene. J. Geophys. Res. Atmos. 125, e2019JD031818 (2020).

    CAS 

    Google Scholar
     

  • Hossaini, R. et al. Latest tendencies in stratospheric chlorine from very short-lived substances. J. Geophys. Res. Atmos. 124, 2318–2335 (2019).

    CAS 

    Google Scholar
     

  • An, M. et al. Fast improve in dichloromethane emissions from China inferred by way of atmospheric observations. Nat. Commun. 12, 7279 (2021).

    CAS 

    Google Scholar
     

  • Fang, X. et al. Fast improve in ozone-depleting chloroform emissions from China. Nat. Geosci. 12, 89–93 (2019).

    CAS 

    Google Scholar
     

  • Daniel, J. S., Solomon, S., Portmann, R. W. & Garcia, R. R. Stratospheric ozone destruction: the significance of bromine relative to chlorine. J. Geophys. Res. Atmos. 104, 23871–23880 (1999).

    CAS 

    Google Scholar
     

  • Koenig, T. Ok. et al. Quantitative detection of iodine within the stratosphere. Proc. Natl Acad. Sci. USA 117, 1860–1866 (2020).

    CAS 

    Google Scholar
     

  • Solomon, S., Garcia, R. R. & Ravishankara, A. R. On the function of iodine in ozone depletion. J. Geophys. Res. 99, 491–499 (1994).


    Google Scholar
     

  • Karagodin-Doyennel, A. et al. Iodine chemistry within the chemistry–local weather mannequin SOCOL-AERv2-I. Geosci. Mannequin Dev. 14, 6623–6645 (2021).


    Google Scholar
     

  • Cuevas, C. A. et al. The affect of iodine on the Antarctic stratospheric ozone gap. Proc. Natl Acad. Sci. USA 119, 1–10 (2022).


    Google Scholar
     

  • Klobas, J. E., Hansen, J., Weisenstein, D. Ok., Kennedy, R. P. & Wilmouth, D. M. Sensitivity of iodine-mediated stratospheric ozone loss chemistry to future chemistry–local weather situations. Entrance. Earth Sci. 9, 1–12 (2021).


    Google Scholar
     

  • Falk, S. et al. Brominated VSLS and their affect on ozone beneath a altering local weather. Atmos. Chem. Phys. 17, 11313–11329 (2017).

    CAS 

    Google Scholar
     

  • Ball, W. T. et al. Stratospheric ozone tendencies for 1985–2018: sensitivity to current giant variability. Atmos. Chem. Phys. 19, 12731–12748 (2019).

    CAS 

    Google Scholar
     

  • Tilmes, S. et al. Illustration of the Group Earth System Mannequin (CESM1) CAM4-chem throughout the Chemistry–Local weather Mannequin Initiative (CCMI). Geosci. Mannequin Dev. 9, 1853–1890 (2016).

    CAS 

    Google Scholar
     

  • Ball, W. T. et al. Reconciling variations in stratospheric ozone composites. Atmos. Chem. Phys. 17, 12269–12302 (2017).

    CAS 

    Google Scholar
     

  • McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating idea in earth science. Science 314, 1740–1745 (2006).

    CAS 

    Google Scholar
     

  • Calvo, N., Garcia, R. R., Randel, W. J. & Marsh, D. R. Dynamical mechanism for the rise in tropical upwelling within the lowermost tropical stratosphere throughout heat ENSO occasions. J. Atmos. Sci. 67, 2331–2340 (2010).


    Google Scholar
     

  • Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).


    Google Scholar
     

  • Diallo, M. et al. Response of stratospheric water vapor and ozone to the weird timing of El Niño and the QBO disruption in 2015–2016. Atmos. Chem. Phys. 18, 13055–13073 (2018).

    CAS 

    Google Scholar
     

  • Jonsson, A. I., de Grandpre, J., Fomichev, V. I., McConnell, J. C. & Beagley, S. R. Doubled CO2-induced cooling within the center ambiance: photochemical evaluation of the ozone radiative suggestions. J. Geophys. Res. Atmos. 109, D24103 (2004).


    Google Scholar
     

  • Dietmüller, S., Garny, H., Eichinger, R. & Ball, W. Evaluation of current lower-stratospheric ozone tendencies in chemistry local weather fashions. Atmos. Chem. Phys. 21, 6811–6837 (2021).


    Google Scholar
     

  • van Vuuren, D. P. et al. The consultant focus pathways: an summary. Clim. Change 109, 5–31 (2011).


    Google Scholar
     

  • Iglesias-Suarez, F. et al. Pure halogens buffer tropospheric ozone in a altering local weather. Nat. Clim. Change 10, 147–154 (2020).

    CAS 

    Google Scholar
     

  • Iglesias-Suarez, F., Younger, P. J. & Wild, O. Stratospheric ozone change and associated local weather impacts over 1850–2100 as modelled by the ACCMIP ensemble. Atmos. Chem. Phys. 16, 343–363 (2016).

    CAS 

    Google Scholar
     

  • Eyring, V. et al. Sensitivity of twenty first century stratospheric ozone to greenhouse fuel situations. Geophys. Res. Lett. 37, L16807 (2010).


    Google Scholar
     

  • Ball, W. T., Chiodo, G., Abalos, M., Alsing, J. & Stenke, A. Inconsistencies between chemistry–local weather fashions and noticed decrease stratospheric ozone tendencies since 1998. Atmos. Chem. Phys. 20, 9737–9752 (2020).

    CAS 

    Google Scholar
     

  • Lamarque, J. F. et al. CAM-chem: description and analysis of interactive atmospheric chemistry within the Group Earth System Mannequin. Geosci. Mannequin Dev. 5, 369–411 (2012).


    Google Scholar
     

  • Neale, R. B. et al. The imply local weather of the Group Environment Mannequin (CAM4) in pressured SST and absolutely coupled experiments. J. Clim. 26, 5150–5168 (2013).


    Google Scholar
     

  • Saiz-Lopez, A. et al. Estimating the local weather significance of halogen-driven ozone loss within the tropical marine troposphere. Atmos. Chem. Phys. 12, 3939–3949 (2012).

    CAS 

    Google Scholar
     

  • Saiz-Lopez, A. et al. Iodine chemistry within the troposphere and its impact on ozone. Atmos. Chem. Phys. 14, 13119–13143 (2014).


    Google Scholar
     

  • Fernandez, R. P., Salawitch, R. J., Kinnison, D. E., Lamarque, J. F. & Saiz-Lopez, A. Bromine partitioning within the tropical tropopause layer: implications for stratospheric injection. Atmos. Chem. Phys. 14, 13391–13410 (2014).


    Google Scholar
     

  • Ordóñez, C. et al. Bromine and iodine chemistry in a world chemistry–local weather mannequin: description and analysis of very short-lived oceanic sources. Atmos. Chem. Phys. 12, 1423–1447 (2012).


    Google Scholar
     

  • Ziska, F., Quack, B., Tegtmeier, S., Stemmler, I. & Krüger, Ok. Future emissions of marine halogenated very-short lived substances beneath local weather change. J. Atmos. Chem. 74, 245–260 (2017).

    CAS 

    Google Scholar
     

  • Ziska, F. et al. World sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmos. Chem. Phys. 13, 8915–8934 (2013).


    Google Scholar
     

  • Maas, J. et al. Simulations of anthropogenic bromoform point out excessive emissions on the coast of East Asia. Atmos. Chem. Phys. 21, 4103–4121 (2021).

    CAS 

    Google Scholar
     

  • Hossaini, R. et al. The growing menace to stratospheric ozone from dichloromethane. Nat. Commun. 8, 15962 (2017).

    CAS 

    Google Scholar
     

  • Prados-Roman, C. et al. A unfavorable suggestions between anthropogenic ozone air pollution and enhanced ocean emissions of iodine. Atmos. Chem. Phys. 15, 2215–2224 (2015).

    CAS 

    Google Scholar
     

  • Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A brand new sea floor temperature and sea ice boundary dataset for the Group Environment Mannequin. J. Clim. 21, 5145–5153 (2008).


    Google Scholar
     

  • Orbe, C. et al. Tropospheric transport variations between fashions utilizing the identical large-scale meteorological fields. Geophys. Res. Lett. 44, 1068–1078 (2017).


    Google Scholar
     

  • Chrysanthou, A. et al. The impact of atmospheric nudging on the stratospheric residual circulation in chemistry–local weather fashions. Atmos. Chem. Phys. 19, 11559–11586 (2019).

    CAS 

    Google Scholar
     

  • Davis, N. A. et al. A complete evaluation of tropical stratospheric upwelling within the specified dynamics Group Earth System Mannequin 1.2.2—Entire Environment Group Local weather Mannequin (CESM (WACCM)). Geosci. Mannequin Dev. 13, 717–734 (2020).


    Google Scholar
     

  • Davis, N. A., Callaghan, P., Simpson, I. R. & Tilmes, S. Specified dynamics scheme impacts on wave-mean circulation dynamics, convection, and tracer transport in CESM2 (WACCM6). Atmos. Chem. Phys. 22, 197–214 (2022).

    CAS 

    Google Scholar
     

  • Meinshausen, M. et al. The RCP greenhouse fuel concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    CAS 

    Google Scholar
     

  • Alsing, J. & Ball, W. BASIC composite ozone time-series knowledge, model 3. Mendeley Knowledge https://doi.org/10.17632/2mgx2xzzpk.3 (2019).

  • Villamayor, J. et al. Dataset for very short-lived halogens amplify current and future ozone depletion tendencies within the tropical decrease stratosphere – Villamayor et al., 2023 – NCC, model 1. Mendeley Knowledge https://doi.org/10.17632/bmjnwmdd2s.1 (2023).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved