Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Giant losses of whole ozone in Antarctica reveal seasonal ClOx/NOx interplay. Nature 315, 207–210 (1985).
CAS
Google Scholar
Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).
CAS
Google Scholar
Solomon, S. Stratospheric ozone depletion: a assessment of ideas and historical past. Rev. Geophys. 37, 275–316 (1999).
CAS
Google Scholar
Scientific Evaluation of Ozone Depletion: 2018, World Ozone Analysis and Monitoring Mission. Report No. 58, 588 (World Meteorological Group, 2018).
Chipperfield, M. P. et al. On the reason for current variations in decrease stratospheric ozone. Geophys. Res. Lett. 45, 5718–5726 (2018).
Google Scholar
Petropavlovskikh, I. et al. SPARC/IO3C/GAW Report on Lengthy-term Ozone Tendencies and Uncertainties within the Stratosphere. Report No. 9, WCRP-17/2018, GAW Report No. 241 (SPARC/IO3C/GAW, 2019); https://doi.org/10.17874/f899e57a20b
Solomon, S. et al. Emergence of therapeutic within the Antarctic ozone layer. Science 353, 269–274 (2016).
CAS
Google Scholar
Godin-Beekmann, S. et al. Up to date tendencies of the stratospheric ozone vertical distribution within the 60° S–60° N latitude vary primarily based on the LOTUS regression mannequin. Atmos. Chem. Phys. 22, 11657–11673 (2022).
CAS
Google Scholar
Ball, W. T. et al. Proof for a steady decline in decrease stratospheric ozone offsetting ozone layer restoration. Atmos. Chem. Phys. 18, 1379–1394 (2018).
CAS
Google Scholar
Engel, A. et al. Replace on Ozone-Depleting Substances (ODSs) and Different Gases of Curiosity to the Montreal Protocol, Chapter 1 in Scientific Evaluation of Ozone Depletion: 2018, World Ozone Analysis and Monitoring Mission. Report No. 58 (World Meteorological Group, 2018).
Iglesias-Suarez, F. et al. Key drivers of ozone change and its radiative forcing over the twenty first century. Atmos. Chem. Phys. 18, 6121–6139 (2018).
CAS
Google Scholar
Butchart, N. The Brewer–Dobson circulation. Rev. Geophys. 52, 157–184 (2014).
Google Scholar
Karpechko, A. Y. et al. Stratospheric Ozone Modifications and Local weather. Scientific Evaluation of Ozone Depletion: 2018 (World Meteorological Group, 2019).
Newman, P. A. & McKenzie, R. UV impacts averted by the Montreal Protocol. Photochem. Photobiol. Sci. 10, 1152–1160 (2011).
CAS
Google Scholar
Bais, A. F. et al. Ozone–local weather interactions and results on photo voltaic ultraviolet radiation. Photochem. Photobiol. Sci. 18, 602–640 (2019).
CAS
Google Scholar
Riese, M. et al. Affect of uncertainties in atmospheric mixing on simulated UTLS composition and associated radiative results. J. Geophys. Res. Atmos. 117, 1–10 (2012).
Google Scholar
Salawitch, R. J. et al. Sensitivity of ozone to bromine within the decrease stratosphere. Geophys. Res. Lett. 32, 1–5 (2005).
Google Scholar
Hossaini, R. et al. Effectivity of short-lived halogens at influencing local weather by way of depletion of stratospheric ozone. Nat. Geosci. 8, 186–190 (2015).
CAS
Google Scholar
Saiz-Lopez, A. et al. Injection of iodine to the stratosphere. Geophys. Res. Lett. 42, 6852–6859 (2015).
CAS
Google Scholar
Fernandez, R. P., Kinnison, D. E., Lamarque, J. F., Tilmes, S. & Saiz-Lopez, A. Affect of biogenic very short-lived bromine on the Antarctic ozone gap throughout the twenty first century. Atmos. Chem. Phys. 17, 1673–1688 (2017).
CAS
Google Scholar
Hossaini, R. et al. Development in stratospheric chlorine from short-lived chemical compounds not managed by the Montreal Protocol. Geophys. Res. Lett. 42, 4573–4580 (2015).
CAS
Google Scholar
Carpenter, L. J. & Liss, P. S. On temperate sources of bromoform and different reactive natural bromine gases. J. Geophys. Res. Atmos. 105, 20539–20547 (2000).
CAS
Google Scholar
Salawitch, R. J. Biogenic bromine. Nature 439, 275–277 (2006).
CAS
Google Scholar
Aschmann, J., Sinnhuber, B.-M., Chipperfield, M. P. & Hossaini, R. Affect of deep convection and dehydration on bromine loading within the higher troposphere and decrease stratosphere. Atmos. Chem. Phys. 11, 2671–2687 (2011).
CAS
Google Scholar
Fernandez, R. P. et al. Intercomparison between surrogate, express, and full remedies of VSL bromine chemistry throughout the CAM-Chem Chemistry–Local weather Mannequin. Geophys. Res. Lett. 48, 1–10 (2021).
Google Scholar
Claxton, T. et al. A synthesis inversion to constrain world emissions of two very quick lived chlorocarbons: dichloromethane, and perchloroethylene. J. Geophys. Res. Atmos. 125, e2019JD031818 (2020).
CAS
Google Scholar
Hossaini, R. et al. Latest tendencies in stratospheric chlorine from very short-lived substances. J. Geophys. Res. Atmos. 124, 2318–2335 (2019).
CAS
Google Scholar
An, M. et al. Fast improve in dichloromethane emissions from China inferred by way of atmospheric observations. Nat. Commun. 12, 7279 (2021).
CAS
Google Scholar
Fang, X. et al. Fast improve in ozone-depleting chloroform emissions from China. Nat. Geosci. 12, 89–93 (2019).
CAS
Google Scholar
Daniel, J. S., Solomon, S., Portmann, R. W. & Garcia, R. R. Stratospheric ozone destruction: the significance of bromine relative to chlorine. J. Geophys. Res. Atmos. 104, 23871–23880 (1999).
CAS
Google Scholar
Koenig, T. Ok. et al. Quantitative detection of iodine within the stratosphere. Proc. Natl Acad. Sci. USA 117, 1860–1866 (2020).
CAS
Google Scholar
Solomon, S., Garcia, R. R. & Ravishankara, A. R. On the function of iodine in ozone depletion. J. Geophys. Res. 99, 491–499 (1994).
Google Scholar
Karagodin-Doyennel, A. et al. Iodine chemistry within the chemistry–local weather mannequin SOCOL-AERv2-I. Geosci. Mannequin Dev. 14, 6623–6645 (2021).
Google Scholar
Cuevas, C. A. et al. The affect of iodine on the Antarctic stratospheric ozone gap. Proc. Natl Acad. Sci. USA 119, 1–10 (2022).
Google Scholar
Klobas, J. E., Hansen, J., Weisenstein, D. Ok., Kennedy, R. P. & Wilmouth, D. M. Sensitivity of iodine-mediated stratospheric ozone loss chemistry to future chemistry–local weather situations. Entrance. Earth Sci. 9, 1–12 (2021).
Google Scholar
Falk, S. et al. Brominated VSLS and their affect on ozone beneath a altering local weather. Atmos. Chem. Phys. 17, 11313–11329 (2017).
CAS
Google Scholar
Ball, W. T. et al. Stratospheric ozone tendencies for 1985–2018: sensitivity to current giant variability. Atmos. Chem. Phys. 19, 12731–12748 (2019).
CAS
Google Scholar
Tilmes, S. et al. Illustration of the Group Earth System Mannequin (CESM1) CAM4-chem throughout the Chemistry–Local weather Mannequin Initiative (CCMI). Geosci. Mannequin Dev. 9, 1853–1890 (2016).
CAS
Google Scholar
Ball, W. T. et al. Reconciling variations in stratospheric ozone composites. Atmos. Chem. Phys. 17, 12269–12302 (2017).
CAS
Google Scholar
McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating idea in earth science. Science 314, 1740–1745 (2006).
CAS
Google Scholar
Calvo, N., Garcia, R. R., Randel, W. J. & Marsh, D. R. Dynamical mechanism for the rise in tropical upwelling within the lowermost tropical stratosphere throughout heat ENSO occasions. J. Atmos. Sci. 67, 2331–2340 (2010).
Google Scholar
Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).
Google Scholar
Diallo, M. et al. Response of stratospheric water vapor and ozone to the weird timing of El Niño and the QBO disruption in 2015–2016. Atmos. Chem. Phys. 18, 13055–13073 (2018).
CAS
Google Scholar
Jonsson, A. I., de Grandpre, J., Fomichev, V. I., McConnell, J. C. & Beagley, S. R. Doubled CO2-induced cooling within the center ambiance: photochemical evaluation of the ozone radiative suggestions. J. Geophys. Res. Atmos. 109, D24103 (2004).
Google Scholar
Dietmüller, S., Garny, H., Eichinger, R. & Ball, W. Evaluation of current lower-stratospheric ozone tendencies in chemistry local weather fashions. Atmos. Chem. Phys. 21, 6811–6837 (2021).
Google Scholar
van Vuuren, D. P. et al. The consultant focus pathways: an summary. Clim. Change 109, 5–31 (2011).
Google Scholar
Iglesias-Suarez, F. et al. Pure halogens buffer tropospheric ozone in a altering local weather. Nat. Clim. Change 10, 147–154 (2020).
CAS
Google Scholar
Iglesias-Suarez, F., Younger, P. J. & Wild, O. Stratospheric ozone change and associated local weather impacts over 1850–2100 as modelled by the ACCMIP ensemble. Atmos. Chem. Phys. 16, 343–363 (2016).
CAS
Google Scholar
Eyring, V. et al. Sensitivity of twenty first century stratospheric ozone to greenhouse fuel situations. Geophys. Res. Lett. 37, L16807 (2010).
Google Scholar
Ball, W. T., Chiodo, G., Abalos, M., Alsing, J. & Stenke, A. Inconsistencies between chemistry–local weather fashions and noticed decrease stratospheric ozone tendencies since 1998. Atmos. Chem. Phys. 20, 9737–9752 (2020).
CAS
Google Scholar
Lamarque, J. F. et al. CAM-chem: description and analysis of interactive atmospheric chemistry within the Group Earth System Mannequin. Geosci. Mannequin Dev. 5, 369–411 (2012).
Google Scholar
Neale, R. B. et al. The imply local weather of the Group Environment Mannequin (CAM4) in pressured SST and absolutely coupled experiments. J. Clim. 26, 5150–5168 (2013).
Google Scholar
Saiz-Lopez, A. et al. Estimating the local weather significance of halogen-driven ozone loss within the tropical marine troposphere. Atmos. Chem. Phys. 12, 3939–3949 (2012).
CAS
Google Scholar
Saiz-Lopez, A. et al. Iodine chemistry within the troposphere and its impact on ozone. Atmos. Chem. Phys. 14, 13119–13143 (2014).
Google Scholar
Fernandez, R. P., Salawitch, R. J., Kinnison, D. E., Lamarque, J. F. & Saiz-Lopez, A. Bromine partitioning within the tropical tropopause layer: implications for stratospheric injection. Atmos. Chem. Phys. 14, 13391–13410 (2014).
Google Scholar
Ordóñez, C. et al. Bromine and iodine chemistry in a world chemistry–local weather mannequin: description and analysis of very short-lived oceanic sources. Atmos. Chem. Phys. 12, 1423–1447 (2012).
Google Scholar
Ziska, F., Quack, B., Tegtmeier, S., Stemmler, I. & Krüger, Ok. Future emissions of marine halogenated very-short lived substances beneath local weather change. J. Atmos. Chem. 74, 245–260 (2017).
CAS
Google Scholar
Ziska, F. et al. World sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmos. Chem. Phys. 13, 8915–8934 (2013).
Google Scholar
Maas, J. et al. Simulations of anthropogenic bromoform point out excessive emissions on the coast of East Asia. Atmos. Chem. Phys. 21, 4103–4121 (2021).
CAS
Google Scholar
Hossaini, R. et al. The growing menace to stratospheric ozone from dichloromethane. Nat. Commun. 8, 15962 (2017).
CAS
Google Scholar
Prados-Roman, C. et al. A unfavorable suggestions between anthropogenic ozone air pollution and enhanced ocean emissions of iodine. Atmos. Chem. Phys. 15, 2215–2224 (2015).
CAS
Google Scholar
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A brand new sea floor temperature and sea ice boundary dataset for the Group Environment Mannequin. J. Clim. 21, 5145–5153 (2008).
Google Scholar
Orbe, C. et al. Tropospheric transport variations between fashions utilizing the identical large-scale meteorological fields. Geophys. Res. Lett. 44, 1068–1078 (2017).
Google Scholar
Chrysanthou, A. et al. The impact of atmospheric nudging on the stratospheric residual circulation in chemistry–local weather fashions. Atmos. Chem. Phys. 19, 11559–11586 (2019).
CAS
Google Scholar
Davis, N. A. et al. A complete evaluation of tropical stratospheric upwelling within the specified dynamics Group Earth System Mannequin 1.2.2—Entire Environment Group Local weather Mannequin (CESM (WACCM)). Geosci. Mannequin Dev. 13, 717–734 (2020).
Google Scholar
Davis, N. A., Callaghan, P., Simpson, I. R. & Tilmes, S. Specified dynamics scheme impacts on wave-mean circulation dynamics, convection, and tracer transport in CESM2 (WACCM6). Atmos. Chem. Phys. 22, 197–214 (2022).
CAS
Google Scholar
Meinshausen, M. et al. The RCP greenhouse fuel concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
CAS
Google Scholar
Alsing, J. & Ball, W. BASIC composite ozone time-series knowledge, model 3. Mendeley Knowledge https://doi.org/10.17632/2mgx2xzzpk.3 (2019).
Villamayor, J. et al. Dataset for very short-lived halogens amplify current and future ozone depletion tendencies within the tropical decrease stratosphere – Villamayor et al., 2023 – NCC, model 1. Mendeley Knowledge https://doi.org/10.17632/bmjnwmdd2s.1 (2023).