Stroeve, J. C. et al. Developments in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).
Article
Google Scholar
Bailey, H. et al. Arctic sea-ice loss fuels excessive European snowfall. Nat. Geosci. 14, 283–288 (2021).
Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I. & White, I. Linking Arctic variability and alter with excessive winter climate in america. Science 373, 1116–1121 (2021).
Zhang, P. et al. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 4, eaat6025 (2018).
Article
CAS
Google Scholar
Dalpadado, P. et al. Productiveness within the Barents Sea—response to current local weather variability. PLoS ONE 9, e95273 (2014).
Fossheim, M. et al. Current warming results in a speedy borealization of fish communities within the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Article
Google Scholar
Park, D.-S. R., Lee, S. & Feldstein, S. B. Attribution of the current winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Clim. 28, 4027–4033 (2015).
Article
Google Scholar
Woods, C. & Caballero, R. The function of moist intrusions in winter Arctic warming and sea ice decline. J. Clim. 29, 4473–4485 (2016).
Article
Google Scholar
Hofsteenge, M. G., Graversen, R. G., Rydsaa, J. H. & Rey, Z. The influence of atmospheric Rossby waves and cyclones on the Arctic sea ice variability. Clim. Dynam. 59, 579–594 (2022).
Petty, A. A., Holland, M. M., Bailey, D. A. & Kurtz, N. T. Heat Arctic, elevated winter sea ice progress? Geophys. Res. Lett. 45, 12922–12930 (2018).
Article
Google Scholar
Stroeve, J. & Notz, D. Altering state of Arctic sea ice throughout all seasons. Environ. Res. Lett. 13, 103001 (2018).
Article
Google Scholar
Barton, B. I., Lenn, Y.-D. & Lique, C. Noticed Atlantification of the Barents Sea causes the polar entrance to restrict the growth of winter sea ice. J. Phys. Oceanogr. 48, 1849–1866 (2018).
Article
Google Scholar
Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Entrance. Mar. Sci. 7, 491 (2020).
Skagseth, Ø. et al. Diminished effectivity of the Barents Sea cooling machine. Nat. Clim. Change 10, 661–666 (2020).
Article
CAS
Google Scholar
Tsubouchi, T. et al. Elevated ocean warmth transport into the Nordic Seas and Arctic Ocean over the interval 1993–2016. Nat. Clim. Change 11, 21–26 (2021).
Article
Google Scholar
Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The function of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).
Article
Google Scholar
Ralph, F. M. et al. Atmospheric rivers emerge as a worldwide science and purposes focus. Bull. Am. Meteorol. Soc. 98, 1969–1973 (2017).
Article
Google Scholar
Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Climate Rev. 126, 725–735 (1998).
Article
Google Scholar
Newman, M., Kiladis, G. N., Weickmann, Ok. M., Ralph, F. M. & Sardeshmukh, P. D. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, together with the function of atmospheric rivers. J. Clim. 25, 7341–7361 (2012).
Article
Google Scholar
Lavers, D. A. & Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and america. J. Hydrol. 522, 382–390 (2015).
Article
Google Scholar
Chen, X., Leung, L. R., Wigmosta, M. & Richmond, M. Impression of atmospheric rivers on floor hydrological processes in western U.S. watersheds. J. Geophys. Res. Atmos. 124, 8896–8916 (2019).
Article
Google Scholar
Hegyi, B. M. & Taylor, P. C. The unprecedented 2016–2017 Arctic sea ice progress season: the essential function of atmospheric rivers and longwave fluxes. Geophys. Res. Lett. 45, 5204–5212 (2018).
Article
Google Scholar
Gorodetskaya, I. V. et al. The function of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).
Article
Google Scholar
Mattingly, Ok. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland ice sheet floor mass stability. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).
Article
Google Scholar
Wille, J. D. et al. West Antarctic floor soften triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).
Article
CAS
Google Scholar
Francis, D., Mattingly, Ok. S., Temimi, M., Massom, R. & Heil, P. On the essential function of atmospheric rivers within the two main Weddell Polynya occasions in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).
Article
Google Scholar
Persson, P. O. G., Shupe, M. D., Perovich, D. & Solomon, A. Linking atmospheric synoptic transport, cloud section, floor power fluxes, and sea-ice progress: observations of midwinter SHEBA situations. Clim. Dynam. 49, 1341–1364 (2017).
Article
Google Scholar
Doyle, S. H. et al. Amplified soften and circulate of the Greenland ice sheet pushed by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).
Article
CAS
Google Scholar
Ledley, T. S. Snow on sea ice: competing results in shaping local weather. J. Geophys. Res. Atmos. 96, 17195–17208 (1991).
Article
Google Scholar
Merkouriadi, I., Cheng, B., Hudson, S. R. & Granskog, M. A. Impact of frequent winter warming occasions (storms) and snow on sea-ice progress—a case from the Atlantic sector of the Arctic Ocean in the course of the N-ICE2015 marketing campaign. Ann. Glaciol. 61, 164–170 (2020).
Wang, Z., Walsh, J., Szymborski, S. & Peng, M. Fast Arctic sea ice loss on the synoptic time scale and associated atmospheric circulation anomalies. J. Clim. 33, 1597–1617 (2020).
Article
Google Scholar
Gao, Y., Lu, J. & Leung, L. R. Uncertainties in projecting future modifications in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim. 29, 6711–6726 (2016).
Article
Google Scholar
Ma, W., Chen, G. & Guan, B. Poleward shift of atmospheric rivers within the Southern Hemisphere in current many years. Geophys. Res. Lett. 47, e2020GL089934 (2020).
Article
Google Scholar
Payne, A. E. et al. Responses and impacts of atmospheric rivers to local weather change. Nat. Rev. Earth Environ. 1, 143–157 (2020).
Article
Google Scholar
Yang, W. & Magnusdottir, G. Springtime excessive moisture transport into the Arctic and its influence on sea ice focus. J. Geophys. Res. Atmos. 122, 5316–5329 (2017).
Article
Google Scholar
Ding, Q. et al. Tropical forcing of the current speedy Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).
Article
CAS
Google Scholar
Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the speed of Arctic sea ice lower. Geophys. Res. Lett. 45, 11,326–11,333 (2018).
Article
Google Scholar
Wu, Y., Lu, J., Ding, Q. & Liu, F. Linear response operate reveals the simplest distant forcing in inflicting September Arctic sea ice melting in CESM. Geophys. Res. Lett. 48, e2021GL094189 (2021).
Article
Google Scholar
Onarheim, I. H. & Årthun, M. Towards an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).
Article
Google Scholar
Field, J. E. et al. Greenland ice sheet rainfall, warmth and albedo suggestions impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett. 49, e2021GL097356 (2022).
Article
Google Scholar
Fausto, R. S., van As, D., Field, J. E., Colgan, W. & Langen, P. L. Quantifying the floor power fluxes in South Greenland in the course of the 2012 excessive soften episodes utilizing in-situ observations. Entrance. Earth Sci. 4, 82 (2016).
Gettelman, A. et al. Excessive local weather sensitivity within the Group Earth System Mannequin Model 2 (CESM2). Geophys. Res. Lett. 46, 8329–8337 (2019).
Article
Google Scholar
Luo, D. et al. Impression of Ural blocking on winter heat Arctic–chilly Eurasian anomalies. Half I: blocking-induced amplification. J. Clim. 29, 3925–3947 (2016).
Article
Google Scholar
Clark, J. P. & Lee, S. The function of the tropically excited Arctic warming mechanism on the nice and cozy Arctic chilly continent floor air temperature pattern sample. Geophys. Res. Lett. 46, 8490–8499 (2019).
Article
Google Scholar
Vihma, T. et al. The atmospheric function within the Arctic water cycle: a evaluation on processes, previous and future modifications, and their impacts. J. Geophys. Res. Biogeosci. 121, 586–620 (2016).
Article
Google Scholar
Gimeno, L. et al. Atmospheric moisture transport and the decline in Arctic sea ice. WIREs Clim. Change 10, e588 (2019).
Article
Google Scholar
Bintanja, R. et al. Sturdy future will increase in Arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).
Article
CAS
Google Scholar
Zahn, M., Akperov, M., Rinke, A., Feser, F. & Mokhov, I. I. Developments of cyclone traits within the Arctic and their patterns from completely different reanalysis knowledge. J. Geophys. Res. Atmos. 123, 2737–2751 (2018).
Article
Google Scholar
Valkonen, E., Cassano, J. & Cassano, E. Arctic cyclones and their interactions with the declining sea ice: a current climatology. J. Geophys. Res. Atmos. 126, e2020JD034366 (2021).
Article
Google Scholar
Webster, M. A., Parker, C., Boisvert, L. & Kwok, R. The function of cyclone exercise in snow accumulation on Arctic sea ice. Nat. Commun. 10, 5285 (2019).
Article
CAS
Google Scholar
McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Display, J. A. New local weather fashions reveal quicker and bigger will increase in Arctic precipitation than beforehand projected. Nat. Commun. 12, 6765 (2021).
Article
CAS
Google Scholar
Swart, N. C., Fyfe, J. C., Gillett, N. & Marshall, G. J. Evaluating tendencies within the southern annular mode and floor westerly jet. J. Clim. 28, 8840–8859 (2015).
Article
Google Scholar
CESM2 Pacific Pacemaker Ensemble (NCAR, 2022); https://doi.org/10.26024/gtrs-tf57
Guan, B. Monitoring atmospheric rivers globally as elongated targets (tARget), model 1. UCLA Dataverse https://doi.org/10.25346/S6/SJGRKY (2021).
Zhang, P. & Chen, G. Replication knowledge for Zhang et al. 2022 Arctic ARs. figshare https://doi.org/10.6084/m9.figshare.21405051.v2 (2022).
Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Article
Google Scholar
Gelaro, R. et al. The Fashionable-Period Retrospective evaluation for Analysis and Functions, Model 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Article
Google Scholar
Kobayashi, S. et al. The JRA-55 reanalysis: common specs and fundamental traits. J. Meteorol. Soc. Jpn Ser. II 93, 5–48 (2015).
Article
Google Scholar
Meier, W. N., Fetterer, F., Windnagel, A. Ok. & Stewart, J. S. NOAA/NSIDC Local weather Knowledge Document of Passive Microwave Sea Ice Focus, Model 4 (NSIDC, 2021); https://doi.org/10.7265/efmz-2t65
Rodgers, Ok. B. et al. Ubiquity of human-induced modifications in local weather variability. Earth Syst. Dynam. 12, 1393–1411 (2021).
Article
Google Scholar
Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by inner local weather variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).
Article
CAS
Google Scholar
Schneider, D. P. & Deser, C. Tropically pushed and externally compelled patterns of Antarctic sea ice change: reconciling noticed and modeled tendencies. Clim. Dynam. 50, 4599–4618 (2018).
Article
Google Scholar
Yang, D. et al. Position of tropical variability in driving decadal shifts within the Southern Hemisphere summertime eddy-driven jet. J. Clim. 33, 5445–5463 (2020).
Article
Google Scholar
Ting, M., Kushnir, Y., Seager, R. & Li, C. Pressured and inner twentieth-century SST tendencies within the North Atlantic. J. Clim. 22, 1469–1481 (2009).
Article
Google Scholar
DelSole, T., Tippett, M. Ok. & Shukla, J. A major factor of unforced multidecadal variability within the current acceleration of world warming. J. Clim. 24, 909–926 (2011).
Article
Google Scholar
Lu, J., Hu, A. & Zeng, Z. On the attainable interplay between inner local weather variability and compelled local weather change. Geophys. Res. Lett. 41, 2962–2970 (2014).
Article
Google Scholar
DuVivier, A. Ok. et al. Arctic and Antarctic sea ice imply state within the Group Earth System Mannequin Model 2 and the affect of atmospheric chemistry. J. Geophys. Res. Oceans 125, e2019JC015934 (2020).
Article
Google Scholar
Kay, J. E. et al. Much less floor sea ice soften within the CESM2 improves Arctic sea ice simulation with minimal non-polar local weather impacts. J. Adv. Mannequin. Earth Syst. 14, e2021MS002679 (2022).
Article
Google Scholar
DeRepentigny, P., Jahn, A., Holland, M. M. & Smith, A. Arctic sea ice in two configurations of the CESM2 in the course of the twentieth and twenty first centuries. J. Geophys. Res. Oceans 125, e2020JC016133 (2020).
Article
Google Scholar
Yamagami, Y., Watanabe, M., Mori, M. & Ono, J. Barents-Kara sea-ice decline attributed to floor warming within the Gulf Stream. Nat. Commun. 13, 3767 (2022).
Article
CAS
Google Scholar
Guan, B. & Waliser, D. E. Detection of atmospheric rivers: analysis and software of an algorithm for world research. J. Geophys. Res. 120, 12514–12535 (2015).
Rutz, J. J. et al. The Atmospheric River Monitoring Technique Intercomparison Challenge (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).
Lora, J. M., Shields, C. A. & Rutz, J. J. Consensus and disagreement in atmospheric river detection: ARTMIP world catalogues. Geophys. Res. Lett. 47, e2020GL089302 (2020).
Article
Google Scholar
Zhang, P., Chen, G., Ma, W., Ming, Y. & Wu, Z. Sturdy atmospheric river response to world warming in idealized and complete local weather fashions. J. Clim. 34, 7717–7734 (2021).
Google Scholar