Climate
Extra frequent atmospheric rivers gradual the seasonal restoration of Arctic sea ice
Published
1 month agoon
By
admin
Stroeve, J. C. et al. Developments in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).
Bailey, H. et al. Arctic sea-ice loss fuels excessive European snowfall. Nat. Geosci. 14, 283–288 (2021).
Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I. & White, I. Linking Arctic variability and alter with excessive winter climate in america. Science 373, 1116–1121 (2021).
Zhang, P. et al. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 4, eaat6025 (2018).
Dalpadado, P. et al. Productiveness within the Barents Sea—response to current local weather variability. PLoS ONE 9, e95273 (2014).
Fossheim, M. et al. Current warming results in a speedy borealization of fish communities within the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Park, D.-S. R., Lee, S. & Feldstein, S. B. Attribution of the current winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Clim. 28, 4027–4033 (2015).
Woods, C. & Caballero, R. The function of moist intrusions in winter Arctic warming and sea ice decline. J. Clim. 29, 4473–4485 (2016).
Hofsteenge, M. G., Graversen, R. G., Rydsaa, J. H. & Rey, Z. The influence of atmospheric Rossby waves and cyclones on the Arctic sea ice variability. Clim. Dynam. 59, 579–594 (2022).
Petty, A. A., Holland, M. M., Bailey, D. A. & Kurtz, N. T. Heat Arctic, elevated winter sea ice progress? Geophys. Res. Lett. 45, 12922–12930 (2018).
Stroeve, J. & Notz, D. Altering state of Arctic sea ice throughout all seasons. Environ. Res. Lett. 13, 103001 (2018).
Barton, B. I., Lenn, Y.-D. & Lique, C. Noticed Atlantification of the Barents Sea causes the polar entrance to restrict the growth of winter sea ice. J. Phys. Oceanogr. 48, 1849–1866 (2018).
Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Entrance. Mar. Sci. 7, 491 (2020).
Skagseth, Ø. et al. Diminished effectivity of the Barents Sea cooling machine. Nat. Clim. Change 10, 661–666 (2020).
Tsubouchi, T. et al. Elevated ocean warmth transport into the Nordic Seas and Arctic Ocean over the interval 1993–2016. Nat. Clim. Change 11, 21–26 (2021).
Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The function of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).
Ralph, F. M. et al. Atmospheric rivers emerge as a worldwide science and purposes focus. Bull. Am. Meteorol. Soc. 98, 1969–1973 (2017).
Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Climate Rev. 126, 725–735 (1998).
Newman, M., Kiladis, G. N., Weickmann, Ok. M., Ralph, F. M. & Sardeshmukh, P. D. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, together with the function of atmospheric rivers. J. Clim. 25, 7341–7361 (2012).
Lavers, D. A. & Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and america. J. Hydrol. 522, 382–390 (2015).
Chen, X., Leung, L. R., Wigmosta, M. & Richmond, M. Impression of atmospheric rivers on floor hydrological processes in western U.S. watersheds. J. Geophys. Res. Atmos. 124, 8896–8916 (2019).
Hegyi, B. M. & Taylor, P. C. The unprecedented 2016–2017 Arctic sea ice progress season: the essential function of atmospheric rivers and longwave fluxes. Geophys. Res. Lett. 45, 5204–5212 (2018).
Gorodetskaya, I. V. et al. The function of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).
Mattingly, Ok. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland ice sheet floor mass stability. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).
Wille, J. D. et al. West Antarctic floor soften triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).
Francis, D., Mattingly, Ok. S., Temimi, M., Massom, R. & Heil, P. On the essential function of atmospheric rivers within the two main Weddell Polynya occasions in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).
Persson, P. O. G., Shupe, M. D., Perovich, D. & Solomon, A. Linking atmospheric synoptic transport, cloud section, floor power fluxes, and sea-ice progress: observations of midwinter SHEBA situations. Clim. Dynam. 49, 1341–1364 (2017).
Doyle, S. H. et al. Amplified soften and circulate of the Greenland ice sheet pushed by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).
Ledley, T. S. Snow on sea ice: competing results in shaping local weather. J. Geophys. Res. Atmos. 96, 17195–17208 (1991).
Merkouriadi, I., Cheng, B., Hudson, S. R. & Granskog, M. A. Impact of frequent winter warming occasions (storms) and snow on sea-ice progress—a case from the Atlantic sector of the Arctic Ocean in the course of the N-ICE2015 marketing campaign. Ann. Glaciol. 61, 164–170 (2020).
Wang, Z., Walsh, J., Szymborski, S. & Peng, M. Fast Arctic sea ice loss on the synoptic time scale and associated atmospheric circulation anomalies. J. Clim. 33, 1597–1617 (2020).
Gao, Y., Lu, J. & Leung, L. R. Uncertainties in projecting future modifications in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim. 29, 6711–6726 (2016).
Ma, W., Chen, G. & Guan, B. Poleward shift of atmospheric rivers within the Southern Hemisphere in current many years. Geophys. Res. Lett. 47, e2020GL089934 (2020).
Payne, A. E. et al. Responses and impacts of atmospheric rivers to local weather change. Nat. Rev. Earth Environ. 1, 143–157 (2020).
Yang, W. & Magnusdottir, G. Springtime excessive moisture transport into the Arctic and its influence on sea ice focus. J. Geophys. Res. Atmos. 122, 5316–5329 (2017).
Ding, Q. et al. Tropical forcing of the current speedy Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).
Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the speed of Arctic sea ice lower. Geophys. Res. Lett. 45, 11,326–11,333 (2018).
Wu, Y., Lu, J., Ding, Q. & Liu, F. Linear response operate reveals the simplest distant forcing in inflicting September Arctic sea ice melting in CESM. Geophys. Res. Lett. 48, e2021GL094189 (2021).
Onarheim, I. H. & Årthun, M. Towards an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).
Field, J. E. et al. Greenland ice sheet rainfall, warmth and albedo suggestions impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett. 49, e2021GL097356 (2022).
Fausto, R. S., van As, D., Field, J. E., Colgan, W. & Langen, P. L. Quantifying the floor power fluxes in South Greenland in the course of the 2012 excessive soften episodes utilizing in-situ observations. Entrance. Earth Sci. 4, 82 (2016).
Gettelman, A. et al. Excessive local weather sensitivity within the Group Earth System Mannequin Model 2 (CESM2). Geophys. Res. Lett. 46, 8329–8337 (2019).
Luo, D. et al. Impression of Ural blocking on winter heat Arctic–chilly Eurasian anomalies. Half I: blocking-induced amplification. J. Clim. 29, 3925–3947 (2016).
Clark, J. P. & Lee, S. The function of the tropically excited Arctic warming mechanism on the nice and cozy Arctic chilly continent floor air temperature pattern sample. Geophys. Res. Lett. 46, 8490–8499 (2019).
Vihma, T. et al. The atmospheric function within the Arctic water cycle: a evaluation on processes, previous and future modifications, and their impacts. J. Geophys. Res. Biogeosci. 121, 586–620 (2016).
Gimeno, L. et al. Atmospheric moisture transport and the decline in Arctic sea ice. WIREs Clim. Change 10, e588 (2019).
Bintanja, R. et al. Sturdy future will increase in Arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).
Zahn, M., Akperov, M., Rinke, A., Feser, F. & Mokhov, I. I. Developments of cyclone traits within the Arctic and their patterns from completely different reanalysis knowledge. J. Geophys. Res. Atmos. 123, 2737–2751 (2018).
Valkonen, E., Cassano, J. & Cassano, E. Arctic cyclones and their interactions with the declining sea ice: a current climatology. J. Geophys. Res. Atmos. 126, e2020JD034366 (2021).
Webster, M. A., Parker, C., Boisvert, L. & Kwok, R. The function of cyclone exercise in snow accumulation on Arctic sea ice. Nat. Commun. 10, 5285 (2019).
McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Display, J. A. New local weather fashions reveal quicker and bigger will increase in Arctic precipitation than beforehand projected. Nat. Commun. 12, 6765 (2021).
Swart, N. C., Fyfe, J. C., Gillett, N. & Marshall, G. J. Evaluating tendencies within the southern annular mode and floor westerly jet. J. Clim. 28, 8840–8859 (2015).
CESM2 Pacific Pacemaker Ensemble (NCAR, 2022); https://doi.org/10.26024/gtrs-tf57
Guan, B. Monitoring atmospheric rivers globally as elongated targets (tARget), model 1. UCLA Dataverse https://doi.org/10.25346/S6/SJGRKY (2021).
Zhang, P. & Chen, G. Replication knowledge for Zhang et al. 2022 Arctic ARs. figshare https://doi.org/10.6084/m9.figshare.21405051.v2 (2022).
Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Gelaro, R. et al. The Fashionable-Period Retrospective evaluation for Analysis and Functions, Model 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Kobayashi, S. et al. The JRA-55 reanalysis: common specs and fundamental traits. J. Meteorol. Soc. Jpn Ser. II 93, 5–48 (2015).
Meier, W. N., Fetterer, F., Windnagel, A. Ok. & Stewart, J. S. NOAA/NSIDC Local weather Knowledge Document of Passive Microwave Sea Ice Focus, Model 4 (NSIDC, 2021); https://doi.org/10.7265/efmz-2t65
Rodgers, Ok. B. et al. Ubiquity of human-induced modifications in local weather variability. Earth Syst. Dynam. 12, 1393–1411 (2021).
Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by inner local weather variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).
Schneider, D. P. & Deser, C. Tropically pushed and externally compelled patterns of Antarctic sea ice change: reconciling noticed and modeled tendencies. Clim. Dynam. 50, 4599–4618 (2018).
Yang, D. et al. Position of tropical variability in driving decadal shifts within the Southern Hemisphere summertime eddy-driven jet. J. Clim. 33, 5445–5463 (2020).
Ting, M., Kushnir, Y., Seager, R. & Li, C. Pressured and inner twentieth-century SST tendencies within the North Atlantic. J. Clim. 22, 1469–1481 (2009).
DelSole, T., Tippett, M. Ok. & Shukla, J. A major factor of unforced multidecadal variability within the current acceleration of world warming. J. Clim. 24, 909–926 (2011).
Lu, J., Hu, A. & Zeng, Z. On the attainable interplay between inner local weather variability and compelled local weather change. Geophys. Res. Lett. 41, 2962–2970 (2014).
DuVivier, A. Ok. et al. Arctic and Antarctic sea ice imply state within the Group Earth System Mannequin Model 2 and the affect of atmospheric chemistry. J. Geophys. Res. Oceans 125, e2019JC015934 (2020).
Kay, J. E. et al. Much less floor sea ice soften within the CESM2 improves Arctic sea ice simulation with minimal non-polar local weather impacts. J. Adv. Mannequin. Earth Syst. 14, e2021MS002679 (2022).
DeRepentigny, P., Jahn, A., Holland, M. M. & Smith, A. Arctic sea ice in two configurations of the CESM2 in the course of the twentieth and twenty first centuries. J. Geophys. Res. Oceans 125, e2020JC016133 (2020).
Yamagami, Y., Watanabe, M., Mori, M. & Ono, J. Barents-Kara sea-ice decline attributed to floor warming within the Gulf Stream. Nat. Commun. 13, 3767 (2022).
Guan, B. & Waliser, D. E. Detection of atmospheric rivers: analysis and software of an algorithm for world research. J. Geophys. Res. 120, 12514–12535 (2015).
Rutz, J. J. et al. The Atmospheric River Monitoring Technique Intercomparison Challenge (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).
Lora, J. M., Shields, C. A. & Rutz, J. J. Consensus and disagreement in atmospheric river detection: ARTMIP world catalogues. Geophys. Res. Lett. 47, e2020GL089302 (2020).
Zhang, P., Chen, G., Ma, W., Ming, Y. & Wu, Z. Sturdy atmospheric river response to world warming in idealized and complete local weather fashions. J. Clim. 34, 7717–7734 (2021).


Mathematician Luis Caffarelli wins Abel prize for fixing equations with geometry

In Duluth, Actual Property Collides With Local weather

Round 2 billion folks haven’t got entry to scrub ingesting water

Utilizing Fossils to Deliver the LA River Again to Life

Vanuatu gathers help for UN local weather justice assertion

Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
Trending
-
Climate3 months ago
Utilizing Fossils to Deliver the LA River Again to Life
-
Climate3 weeks ago
Vanuatu gathers help for UN local weather justice assertion
-
Climate1 month ago
Farewell to Vivienne Westwood, Style’s Insurgent With a Trigger
-
Climate1 month ago
A Lawsuit In opposition to Massive Oil Will get Private
-
Climate1 month ago
South African President Declares ‘State of Disaster’ Over Energy Disaster
-
Biodiversity3 months ago
4 issues we’ve found from tagging Indonesia’s mantas
-
Climate1 month ago
I Need to Swap to an Electrical Range. Can the Board Cease Me?
-
Forests3 months ago
Sustainable forest administration: Indonesia navigates a paradigm shift
Leave a Reply