Connect with us

Climate

Extra frequent atmospheric rivers gradual the seasonal restoration of Arctic sea ice

Published

on


  • Stroeve, J. C. et al. Developments in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).

    Article 

    Google Scholar
     

  • Bailey, H. et al. Arctic sea-ice loss fuels excessive European snowfall. Nat. Geosci. 14, 283–288 (2021).

  • Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I. & White, I. Linking Arctic variability and alter with excessive winter climate in america. Science 373, 1116–1121 (2021).

  • Zhang, P. et al. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 4, eaat6025 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dalpadado, P. et al. Productiveness within the Barents Sea—response to current local weather variability. PLoS ONE 9, e95273 (2014).

  • Fossheim, M. et al. Current warming results in a speedy borealization of fish communities within the Arctic. Nat. Clim. Change 5, 673–677 (2015).

    Article 

    Google Scholar
     

  • Park, D.-S. R., Lee, S. & Feldstein, S. B. Attribution of the current winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Clim. 28, 4027–4033 (2015).

    Article 

    Google Scholar
     

  • Woods, C. & Caballero, R. The function of moist intrusions in winter Arctic warming and sea ice decline. J. Clim. 29, 4473–4485 (2016).

    Article 

    Google Scholar
     

  • Hofsteenge, M. G., Graversen, R. G., Rydsaa, J. H. & Rey, Z. The influence of atmospheric Rossby waves and cyclones on the Arctic sea ice variability. Clim. Dynam. 59, 579–594 (2022).

  • Petty, A. A., Holland, M. M., Bailey, D. A. & Kurtz, N. T. Heat Arctic, elevated winter sea ice progress? Geophys. Res. Lett. 45, 12922–12930 (2018).

    Article 

    Google Scholar
     

  • Stroeve, J. & Notz, D. Altering state of Arctic sea ice throughout all seasons. Environ. Res. Lett. 13, 103001 (2018).

    Article 

    Google Scholar
     

  • Barton, B. I., Lenn, Y.-D. & Lique, C. Noticed Atlantification of the Barents Sea causes the polar entrance to restrict the growth of winter sea ice. J. Phys. Oceanogr. 48, 1849–1866 (2018).

    Article 

    Google Scholar
     

  • Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Entrance. Mar. Sci. 7, 491 (2020).

  • Skagseth, Ø. et al. Diminished effectivity of the Barents Sea cooling machine. Nat. Clim. Change 10, 661–666 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tsubouchi, T. et al. Elevated ocean warmth transport into the Nordic Seas and Arctic Ocean over the interval 1993–2016. Nat. Clim. Change 11, 21–26 (2021).

    Article 

    Google Scholar
     

  • Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The function of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).

    Article 

    Google Scholar
     

  • Ralph, F. M. et al. Atmospheric rivers emerge as a worldwide science and purposes focus. Bull. Am. Meteorol. Soc. 98, 1969–1973 (2017).

    Article 

    Google Scholar
     

  • Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Climate Rev. 126, 725–735 (1998).

    Article 

    Google Scholar
     

  • Newman, M., Kiladis, G. N., Weickmann, Ok. M., Ralph, F. M. & Sardeshmukh, P. D. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, together with the function of atmospheric rivers. J. Clim. 25, 7341–7361 (2012).

    Article 

    Google Scholar
     

  • Lavers, D. A. & Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and america. J. Hydrol. 522, 382–390 (2015).

    Article 

    Google Scholar
     

  • Chen, X., Leung, L. R., Wigmosta, M. & Richmond, M. Impression of atmospheric rivers on floor hydrological processes in western U.S. watersheds. J. Geophys. Res. Atmos. 124, 8896–8916 (2019).

    Article 

    Google Scholar
     

  • Hegyi, B. M. & Taylor, P. C. The unprecedented 2016–2017 Arctic sea ice progress season: the essential function of atmospheric rivers and longwave fluxes. Geophys. Res. Lett. 45, 5204–5212 (2018).

    Article 

    Google Scholar
     

  • Gorodetskaya, I. V. et al. The function of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).

    Article 

    Google Scholar
     

  • Mattingly, Ok. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland ice sheet floor mass stability. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).

    Article 

    Google Scholar
     

  • Wille, J. D. et al. West Antarctic floor soften triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Francis, D., Mattingly, Ok. S., Temimi, M., Massom, R. & Heil, P. On the essential function of atmospheric rivers within the two main Weddell Polynya occasions in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).

    Article 

    Google Scholar
     

  • Persson, P. O. G., Shupe, M. D., Perovich, D. & Solomon, A. Linking atmospheric synoptic transport, cloud section, floor power fluxes, and sea-ice progress: observations of midwinter SHEBA situations. Clim. Dynam. 49, 1341–1364 (2017).

    Article 

    Google Scholar
     

  • Doyle, S. H. et al. Amplified soften and circulate of the Greenland ice sheet pushed by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ledley, T. S. Snow on sea ice: competing results in shaping local weather. J. Geophys. Res. Atmos. 96, 17195–17208 (1991).

    Article 

    Google Scholar
     

  • Merkouriadi, I., Cheng, B., Hudson, S. R. & Granskog, M. A. Impact of frequent winter warming occasions (storms) and snow on sea-ice progress—a case from the Atlantic sector of the Arctic Ocean in the course of the N-ICE2015 marketing campaign. Ann. Glaciol. 61, 164–170 (2020).

  • Wang, Z., Walsh, J., Szymborski, S. & Peng, M. Fast Arctic sea ice loss on the synoptic time scale and associated atmospheric circulation anomalies. J. Clim. 33, 1597–1617 (2020).

    Article 

    Google Scholar
     

  • Gao, Y., Lu, J. & Leung, L. R. Uncertainties in projecting future modifications in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim. 29, 6711–6726 (2016).

    Article 

    Google Scholar
     

  • Ma, W., Chen, G. & Guan, B. Poleward shift of atmospheric rivers within the Southern Hemisphere in current many years. Geophys. Res. Lett. 47, e2020GL089934 (2020).

    Article 

    Google Scholar
     

  • Payne, A. E. et al. Responses and impacts of atmospheric rivers to local weather change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Article 

    Google Scholar
     

  • Yang, W. & Magnusdottir, G. Springtime excessive moisture transport into the Arctic and its influence on sea ice focus. J. Geophys. Res. Atmos. 122, 5316–5329 (2017).

    Article 

    Google Scholar
     

  • Ding, Q. et al. Tropical forcing of the current speedy Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the speed of Arctic sea ice lower. Geophys. Res. Lett. 45, 11,326–11,333 (2018).

    Article 

    Google Scholar
     

  • Wu, Y., Lu, J., Ding, Q. & Liu, F. Linear response operate reveals the simplest distant forcing in inflicting September Arctic sea ice melting in CESM. Geophys. Res. Lett. 48, e2021GL094189 (2021).

    Article 

    Google Scholar
     

  • Onarheim, I. H. & Årthun, M. Towards an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).

    Article 

    Google Scholar
     

  • Field, J. E. et al. Greenland ice sheet rainfall, warmth and albedo suggestions impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett. 49, e2021GL097356 (2022).

    Article 

    Google Scholar
     

  • Fausto, R. S., van As, D., Field, J. E., Colgan, W. & Langen, P. L. Quantifying the floor power fluxes in South Greenland in the course of the 2012 excessive soften episodes utilizing in-situ observations. Entrance. Earth Sci. 4, 82 (2016).

  • Gettelman, A. et al. Excessive local weather sensitivity within the Group Earth System Mannequin Model 2 (CESM2). Geophys. Res. Lett. 46, 8329–8337 (2019).

    Article 

    Google Scholar
     

  • Luo, D. et al. Impression of Ural blocking on winter heat Arctic–chilly Eurasian anomalies. Half I: blocking-induced amplification. J. Clim. 29, 3925–3947 (2016).

    Article 

    Google Scholar
     

  • Clark, J. P. & Lee, S. The function of the tropically excited Arctic warming mechanism on the nice and cozy Arctic chilly continent floor air temperature pattern sample. Geophys. Res. Lett. 46, 8490–8499 (2019).

    Article 

    Google Scholar
     

  • Vihma, T. et al. The atmospheric function within the Arctic water cycle: a evaluation on processes, previous and future modifications, and their impacts. J. Geophys. Res. Biogeosci. 121, 586–620 (2016).

    Article 

    Google Scholar
     

  • Gimeno, L. et al. Atmospheric moisture transport and the decline in Arctic sea ice. WIREs Clim. Change 10, e588 (2019).

    Article 

    Google Scholar
     

  • Bintanja, R. et al. Sturdy future will increase in Arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zahn, M., Akperov, M., Rinke, A., Feser, F. & Mokhov, I. I. Developments of cyclone traits within the Arctic and their patterns from completely different reanalysis knowledge. J. Geophys. Res. Atmos. 123, 2737–2751 (2018).

    Article 

    Google Scholar
     

  • Valkonen, E., Cassano, J. & Cassano, E. Arctic cyclones and their interactions with the declining sea ice: a current climatology. J. Geophys. Res. Atmos. 126, e2020JD034366 (2021).

    Article 

    Google Scholar
     

  • Webster, M. A., Parker, C., Boisvert, L. & Kwok, R. The function of cyclone exercise in snow accumulation on Arctic sea ice. Nat. Commun. 10, 5285 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Display, J. A. New local weather fashions reveal quicker and bigger will increase in Arctic precipitation than beforehand projected. Nat. Commun. 12, 6765 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Swart, N. C., Fyfe, J. C., Gillett, N. & Marshall, G. J. Evaluating tendencies within the southern annular mode and floor westerly jet. J. Clim. 28, 8840–8859 (2015).

    Article 

    Google Scholar
     

  • CESM2 Pacific Pacemaker Ensemble (NCAR, 2022); https://doi.org/10.26024/gtrs-tf57

  • Guan, B. Monitoring atmospheric rivers globally as elongated targets (tARget), model 1. UCLA Dataverse https://doi.org/10.25346/S6/SJGRKY (2021).

  • Zhang, P. & Chen, G. Replication knowledge for Zhang et al. 2022 Arctic ARs. figshare https://doi.org/10.6084/m9.figshare.21405051.v2 (2022).

  • Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Gelaro, R. et al. The Fashionable-Period Retrospective evaluation for Analysis and Functions, Model 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 

    Google Scholar
     

  • Kobayashi, S. et al. The JRA-55 reanalysis: common specs and fundamental traits. J. Meteorol. Soc. Jpn Ser. II 93, 5–48 (2015).

    Article 

    Google Scholar
     

  • Meier, W. N., Fetterer, F., Windnagel, A. Ok. & Stewart, J. S. NOAA/NSIDC Local weather Knowledge Document of Passive Microwave Sea Ice Focus, Model 4 (NSIDC, 2021); https://doi.org/10.7265/efmz-2t65

  • Rodgers, Ok. B. et al. Ubiquity of human-induced modifications in local weather variability. Earth Syst. Dynam. 12, 1393–1411 (2021).

    Article 

    Google Scholar
     

  • Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by inner local weather variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, D. P. & Deser, C. Tropically pushed and externally compelled patterns of Antarctic sea ice change: reconciling noticed and modeled tendencies. Clim. Dynam. 50, 4599–4618 (2018).

    Article 

    Google Scholar
     

  • Yang, D. et al. Position of tropical variability in driving decadal shifts within the Southern Hemisphere summertime eddy-driven jet. J. Clim. 33, 5445–5463 (2020).

    Article 

    Google Scholar
     

  • Ting, M., Kushnir, Y., Seager, R. & Li, C. Pressured and inner twentieth-century SST tendencies within the North Atlantic. J. Clim. 22, 1469–1481 (2009).

    Article 

    Google Scholar
     

  • DelSole, T., Tippett, M. Ok. & Shukla, J. A major factor of unforced multidecadal variability within the current acceleration of world warming. J. Clim. 24, 909–926 (2011).

    Article 

    Google Scholar
     

  • Lu, J., Hu, A. & Zeng, Z. On the attainable interplay between inner local weather variability and compelled local weather change. Geophys. Res. Lett. 41, 2962–2970 (2014).

    Article 

    Google Scholar
     

  • DuVivier, A. Ok. et al. Arctic and Antarctic sea ice imply state within the Group Earth System Mannequin Model 2 and the affect of atmospheric chemistry. J. Geophys. Res. Oceans 125, e2019JC015934 (2020).

    Article 

    Google Scholar
     

  • Kay, J. E. et al. Much less floor sea ice soften within the CESM2 improves Arctic sea ice simulation with minimal non-polar local weather impacts. J. Adv. Mannequin. Earth Syst. 14, e2021MS002679 (2022).

    Article 

    Google Scholar
     

  • DeRepentigny, P., Jahn, A., Holland, M. M. & Smith, A. Arctic sea ice in two configurations of the CESM2 in the course of the twentieth and twenty first centuries. J. Geophys. Res. Oceans 125, e2020JC016133 (2020).

    Article 

    Google Scholar
     

  • Yamagami, Y., Watanabe, M., Mori, M. & Ono, J. Barents-Kara sea-ice decline attributed to floor warming within the Gulf Stream. Nat. Commun. 13, 3767 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guan, B. & Waliser, D. E. Detection of atmospheric rivers: analysis and software of an algorithm for world research. J. Geophys. Res. 120, 12514–12535 (2015).

  • Rutz, J. J. et al. The Atmospheric River Monitoring Technique Intercomparison Challenge (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).

  • Lora, J. M., Shields, C. A. & Rutz, J. J. Consensus and disagreement in atmospheric river detection: ARTMIP world catalogues. Geophys. Res. Lett. 47, e2020GL089302 (2020).

    Article 

    Google Scholar
     

  • Zhang, P., Chen, G., Ma, W., Ming, Y. & Wu, Z. Sturdy atmospheric river response to world warming in idealized and complete local weather fashions. J. Clim. 34, 7717–7734 (2021).


    Google Scholar
     



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved