Myhre, G. et al. PDRMIP: a precipitation driver and response mannequin intercomparison project-protocol and preliminary outcomes. Bull. Am. Meteorol. Soc. 98, 1185–1198 (2017).
Article
CAS
Google Scholar
DeAngelis, A. M., Qu, X., Zelinka, M. D. & Corridor, A. An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249–253 (2015).
Article
CAS
Google Scholar
Trenberth, Ok. Adjustments in precipitation with local weather change. Clim. Res. 47, 123–138 (2011).
Article
Google Scholar
Allen, M. R. & Ingram, W. J. Constraints on future modifications in local weather and the hydrologic cycle. Nature 419, 228–232 (2002).
Article
CAS
Google Scholar
Muller, C. J. & O’Gorman, P. A. An brisk perspective on the regional response of precipitation to local weather change. Nat. Clim. Chang. 1, 266–271 (2011).
Article
Google Scholar
Bala, G., Caldeira, Ok. & Nemani, R. Quick versus gradual response in local weather change: implications for the worldwide hydrological cycle. Clim. Dyn. 35, 423–434 (2010).
Article
Google Scholar
Held, I. M. & Soden, B. J. Sturdy responses of the hydrological cycle to world warming. J. Clim. 19, 5686–5699 (2006).
Article
Google Scholar
Yang, F., Kumar, A., Schlesinger, M. E. & Wang, W. Depth of hydrological cycles in hotter climates. J. Clim. 16, 2419–2423 (2003).
Article
Google Scholar
O’Gorman, P., Allan, R. P., Byrne, M. P. & Previdi, M. Energetic constraints on precipitation below local weather change. Surv. Geophys. 33, 585–608 (2012).
Article
Google Scholar
Samset, B. H. et al. Quick and gradual precipitation responses to particular person local weather forcers: a PDRMIP multimodel examine. Geophys. Res. Lett. 43, 2782–2791 (2016).
Article
Google Scholar
Jeevanjee, N. & Romps, D. M. Imply precipitation change from a deepening troposphere. Proc. Natl Acad. Sci. USA 115, 11465–11470 (2018).
Article
CAS
Google Scholar
Fläschner, D., Mauritsen, T. & Stevens, B. Understanding the intermodel unfold in global-mean hydrological sensitivity. J. Clim. 29, 801–817 (2016).
Article
Google Scholar
Vecchi, G. A. & Soden, B. J. World warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).
Article
Google Scholar
Ma, J. et al. Responses of the tropical atmospheric circulation to local weather change and connection to the hydrological cycle. Annu. Rev. Earth Planet. Sci. 46, 549–580 (2018).
Article
CAS
Google Scholar
Hodnebrog, Ø. et al. Water vapour changes and responses differ between local weather drivers. Atmos. Chem. Phys. 19, 12887–12899 (2019).
Article
CAS
Google Scholar
Chou, C., Chen, C. A., Tan, P. H. & Chen, Ok. T. Mechanisms for world warming impacts on precipitation frequency and depth. J. Clim. 25, 3291–3306 (2012).
Article
Google Scholar
Myhre, G. et al. Frequency of maximum precipitation will increase extensively with occasion rareness below world warming. Sci. Rep. 9, 16063 (2019).
Article
CAS
Google Scholar
Barsugli, J. J. & Sardeshmukh, P. D. World atmospheric sensitivity to tropical SST anomalies all through the Indo-Pacific basin. J. Clim. 15, 3427–3442 (2002).
Article
Google Scholar
Palmer, T. N. & Mansfield, D. A. Response of two atmospheric common circulation fashions to sea-surface temperature anomalies within the tropical East and West Pacific. Nature 310, 483–485 (1984).
Article
Google Scholar
Bony, S. et al. Sturdy direct impact of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).
Article
CAS
Google Scholar
Xie, S.-P. et al. World warming sample formation: sea floor temperature and rainfall. J. Clim. 23, 966–986 (2010).
Article
Google Scholar
Zhou, C., Lu, J., Hu, Y. & Zelinka, M. D. Responses of the Hadley circulation to regional sea floor temperature modifications. J. Clim. 33, 429–441 (2020).
Article
Google Scholar
Ma, J. & Xie, S.-P. Regional patterns of sea floor temperature change: a supply of uncertainty in future projections of precipitation and atmospheric circulation. J. Clim. 26, 2482–2501 (2013).
Article
Google Scholar
Sillmann, J. et al. Excessive moist and dry circumstances affected in a different way by greenhouse gases and aerosols. npj Clim. Atmos. Sci. 2, 24 (2019).
Article
Google Scholar
Allan, R. P. et al. Advances in understanding massive‐scale responses of the water cycle to local weather change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).
Article
Google Scholar
Kvalevåg, M. M., Samset, B. H. & Myhre, G. Hydrological sensitivity to greenhouse gases and aerosols in a worldwide local weather mannequin. Geophys. Res. Lett. 40, 1432–1438 (2013).
Article
Google Scholar
Trenberth, Ok. E., Fasullo, J. T. & Kiehl, J. Earth’s world power price range. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).
Article
Google Scholar
Zhou, C., Zelinka, M. D. & Klein, S. A. Influence of decadal cloud variations on the Earth’s power price range. Nat. Geosci. 9, 871–874 (2016).
Article
CAS
Google Scholar
Ceppi, P. & Gregory, J. M. Relationship of tropospheric stability to local weather sensitivity and Earth’s noticed radiation price range. Proc. Natl Acad. Sci. USA 114, 13126–13131 (2017).
Article
CAS
Google Scholar
Dong, Y., Proistosescu, C., Armour, Ok. C. & Battisti, D. S. Attributing historic and future evolution of radiative feedbacks to regional warming patterns utilizing a Inexperienced’s perform strategy: the preeminence of the Western Pacific. J. Clim. 32, 5471–5491 (2019).
Article
Google Scholar
Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and suggestions on evolving patterns of floor temperature change in local weather fashions. J. Clim. 28, 1630–1648 (2015).
Article
Google Scholar
Xie, S.-P., Kosaka, Y. & Okumura, Y. M. Distinct power budgets for anthropogenic and pure modifications throughout world warming hiatus. Nat. Geosci. 9, 29–33 (2016).
Article
CAS
Google Scholar
Zhang, S., Stier, P. & Watson-Parris, D. On the contribution of quick and gradual responses to precipitation modifications attributable to aerosol perturbations. Atmos. Chem. Phys. 21, 10179–10197 (2021).
Article
CAS
Google Scholar
Watanabe, M. et al. Contribution of pure decadal variability to world warming acceleration and hiatus. Nat. Clim. Chang. 4, 893–897 (2014).
Article
Google Scholar
Kosaka, Y. & Xie, S. P. Latest global-warming hiatus tied to equatorial Pacific floor cooling. Nature 501, 403–407 (2013).
Article
CAS
Google Scholar
Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Better dedicated warming after accounting for the sample impact. Nat. Clim. Chang. 11, 132–136 (2021).
Article
CAS
Google Scholar
Neale, R. B. et al. Description of the NCAR Group Ambiance Mannequin (CAM 5.0). NCAR Technical Notes. (NCAR, 2012).
Zhou, C., Zelinka, M. D. & Klein, S. A. Analyzing the dependence of worldwide cloud suggestions on the spatial sample of sea floor temperature change with a Inexperienced’s perform strategy. J. Adv. Mannequin. Earth Syst. 9, 2174–2189 (2017).
Article
Google Scholar
Thorpe, L. & Andrews, T. The bodily drivers of historic and twenty first century world precipitation modifications. Environ. Res. Lett. 9, 064024 (2014).
Article
Google Scholar
Pendergrass, A. G. The worldwide‐imply precipitation response to CO2‐induced warming in CMIP6 fashions. Geophys. Res. Lett. 47, e2020GL089964 (2020).
Article
CAS
Google Scholar
Trenberth, Ok. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The altering character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).
Article
Google Scholar
O’Gorman, P. A. & Muller, C. J. How carefully do modifications in floor and column water vapor observe Clausius–Clapeyron scaling in local weather change simulations? Environ. Res. Lett. 5, 025207 (2010).
Article
Google Scholar
Ming, Y., Ramaswamy, V. & Persad, G. Two opposing results of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett. 37, 1–4 (2010).
Article
Google Scholar
Again, L. E. & Bretherton, C. S. Geographic variability within the export of moist static power and vertical movement profiles within the tropical Pacific. Geophys. Res. Lett. 33, L17810 (2006).
Williams, A. I. L., Stier, P., Dagan, G. & Watson-Parris, D. Sturdy management of efficient radiative forcing by the spatial sample of absorbing aerosol. Nat. Clim. Chang. 12, 735–742 (2022).
Article
Google Scholar
Dagan, G. & Stier, P. Constraint on precipitation response to local weather change by mixture of atmospheric power and water budgets. npj Clim. Atmos. Sci. 3, 34 (2020).
Article
CAS
Google Scholar
Voigt, A. et al. Clouds, radiation, and atmospheric circulation within the current‐day local weather and below local weather change. WIREs Clim. Chang. 12, 1–22 (2021).
Article
Google Scholar
Eyring, V. et al. Overview of the Coupled Mannequin Intercomparison Challenge Section 6 (CMIP6) experimental design and group. Geosci. Mannequin Dev. 9, 1937–1958 (2016).
Article
Google Scholar
Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, Ok. E. Forcing, feedbacks and local weather sensitivity in CMIP5 coupled ambiance–ocean local weather fashions. Geophys. Res. Lett. 39, 1–7 (2012).
Article
Google Scholar
Watanabe, M., Kamae, Y., Shiogama, H., DeAngelis, A. M. & Suzuki, Ok. Low clouds hyperlink equilibrium local weather sensitivity to hydrological sensitivity. Nat. Clim. Chang. 8, 901–906 (2018).
Article
CAS
Google Scholar
He, J., Soden, B. J. & Kirtman, B. The robustness of the atmospheric circulation and precipitation response to future anthropogenic floor warming. Geophys. Res. Lett. 41, 2614–2622 (2014).
Article
Google Scholar
Liu, C., Allan, R. P. & Huffman, G. J. Co-variation of temperature and precipitation in CMIP5 fashions and satellite tv for pc observations. Geophys. Res. Lett. 39, L13803 (2012).
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and world noticed temperature modifications: a brand new knowledge set from 1850. J. Geophys. Res. 111, D12106 (2006).
Article
Google Scholar
Morice, C. P. et al. An up to date evaluation of close to‐floor temperature change from 1850: the HadCRUT5 knowledge set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).
Article
Google Scholar
Lu, J., Chen, G. & Frierson, D. M. W. Response of the zonal imply atmospheric circulation to El Niño versus world warming. J. Clim. 21, 5835–5851 (2008).
Article
Google Scholar
Rollings, M. & Merlis, T. M. The noticed relationship between Pacific SST variability and Hadley cell extent traits in reanalyses. J. Clim. 34, 2511–2527 (2021).
Article
Google Scholar
Allan, R. P., Willett, Ok. M., John, V. O. & Trent, T. World modifications in water vapor 1979–2020. J. Geophys. Res. Atmos. 127, 1–23 (2022).
Article
Google Scholar
Frieler, Ok., Meinshausen, M., Schneider Von Deimling, T., Andrews, T. & Forster, P. Adjustments in global-mean precipitation in response to warming, greenhouse fuel forcing and black carbon. Geophys. Res. Lett. 38, 1–5 (2011).
Article
Google Scholar
Dai, A. Precipitation traits in eighteen coupled local weather fashions. J. Clim. 19, 4605–4630 (2006).
Article
Google Scholar
Ma, S. & Zhou, T. Sturdy strengthening and westward shift of the tropical Pacific Walker circulation throughout 1979–2012: a comparability of seven units of reanalysis knowledge and 26 CMIP5 fashions. J. Clim. 29, 3097–3118 (2016).
Article
Google Scholar
Gregory, J. M. & Andrews, T. Variation in local weather sensitivity and suggestions parameters in the course of the historic interval. Geophys. Res. Lett. 43, 3911–3920 (2016).
Armour, Ok. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).
Article
CAS
Google Scholar
Heede, U. Ok. & Fedorov, A. V. Japanese equatorial Pacific warming delayed by aerosols and thermostat response to CO2 enhance. Nat. Clim. Chang. 11, 696–703 (2021).
Article
CAS
Google Scholar
Seager, R. et al. Strengthening tropical Pacific zonal sea floor temperature gradient in keeping with rising greenhouse gases. Nat. Clim. Chang. 9, 517–522 (2019).
Article
Google Scholar
Stephens, G. L. et al. Regional intensification of the tropical hydrological cycle throughout ENSO. Geophys. Res. Lett. 45, 4361–4370 (2018).
Article
Google Scholar
Adler, R. F., Gu, G., Sapiano, M., Wang, J.-J. & Huffman, G. J. World precipitation: means, variations and traits in the course of the satellite tv for pc period (1979–2014). Surv. Geophys. 38, 679–699 (2017).
Article
Google Scholar
Gimeno, L. et al. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50, RG4003 (2012).
Article
Google Scholar
He, J. & Soden, B. J. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea floor temperature change. J. Clim. 28, 8728–8742 (2015).
Taylor, C. M. et al. Frequency of maximum Sahelian storms tripled since 1982 in satellite tv for pc observations. Nature 544, 475–478 (2017).
Article
CAS
Google Scholar
Bala, G., Duffy, P. B. & Taylor, Ok. E. Influence of geoengineering schemes on the worldwide hydrological cycle. Proc. Natl Acad. Sci. USA 105, 7664–7669 (2008).
Article
CAS
Google Scholar
Pendergrass, A. G. & Hartmann, D. L. World-mean precipitation and black carbon in AR4 simulations. Geophys. Res. Lett. 39, 1–6 (2012).
Article
Google Scholar
Andrews, T., Forster, P. M. & Gregory, J. M. A floor power perspective on local weather change. J. Clim. 22, 2557–2570 (2009).
Article
Google Scholar
Gregory, J. & Webb, M. Tropospheric adjustment induces a cloud element in CO2 forcing. J. Clim. 21, 58–71 (2008).
Article
Google Scholar
Taylor, Ok. E., Stouffer, R. J. & Meehl, G. A. An outline of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Article
Google Scholar
Bellouin, N. et al. Bounding world aerosol radiative forcing of local weather change. Rev. Geophys. 58, 1–45 (2020).
Article
Google Scholar
Ghan, S. et al. Challenges in constraining anthropogenic aerosol results on cloud radiative forcing utilizing present-day spatiotemporal variability. Proc. Natl Acad. Sci. USA 113, 5804–5811 (2016).
Article
CAS
Google Scholar
Allan, R. P. et al. Bodily constant responses of the worldwide atmospheric hydrological cycle in fashions and observations. Surv. Geophys. 35, 533–552 (2014).
Article
Google Scholar
Myhre, G. et al. Wise warmth has considerably affected the worldwide hydrological cycle over the historic interval. Nat. Commun. 9, 1922 (2018).
Article
CAS
Google Scholar
Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and world temperature change. Geophys. Res. Lett. 37, n/a-n/a (2010).
Article
Google Scholar
Gates, W. L. et al. An outline of the outcomes of the Atmospheric Mannequin Intercomparison Challenge (AMIP I). Bull. Am. Meteorol. Soc. 80, 29–55 (1999).
Article
Google Scholar
Huang, B. et al. Prolonged Reconstructed Sea Floor Temperature, model 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Article
Google Scholar
Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Article
Google Scholar
Adler, R. F. et al. The version-2 World Precipitation Climatology Challenge (GPCP) month-to-month precipitation evaluation (1979–current). J. Hydrometeorol. 4, 1147–1167 (2003).
Article
Google Scholar
Zhang, S., Stier, P., Dagan, G., Zhou, C. & Wang, M. Supporting knowledge for ‘Sea surface warming patterns drive hydrological sensitivity uncertainties’. Zenodo https://doi.org/10.5281/zenodo.7787504 (2023).