Connect with us

Climate

Sea floor warming patterns drive hydrological sensitivity uncertainties

Published

on


  • Myhre, G. et al. PDRMIP: a precipitation driver and response mannequin intercomparison project-protocol and preliminary outcomes. Bull. Am. Meteorol. Soc. 98, 1185–1198 (2017).

    Article 
    CAS 

    Google Scholar
     

  • DeAngelis, A. M., Qu, X., Zelinka, M. D. & Corridor, A. An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249–253 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Trenberth, Ok. Adjustments in precipitation with local weather change. Clim. Res. 47, 123–138 (2011).

    Article 

    Google Scholar
     

  • Allen, M. R. & Ingram, W. J. Constraints on future modifications in local weather and the hydrologic cycle. Nature 419, 228–232 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Muller, C. J. & O’Gorman, P. A. An brisk perspective on the regional response of precipitation to local weather change. Nat. Clim. Chang. 1, 266–271 (2011).

    Article 

    Google Scholar
     

  • Bala, G., Caldeira, Ok. & Nemani, R. Quick versus gradual response in local weather change: implications for the worldwide hydrological cycle. Clim. Dyn. 35, 423–434 (2010).

    Article 

    Google Scholar
     

  • Held, I. M. & Soden, B. J. Sturdy responses of the hydrological cycle to world warming. J. Clim. 19, 5686–5699 (2006).

    Article 

    Google Scholar
     

  • Yang, F., Kumar, A., Schlesinger, M. E. & Wang, W. Depth of hydrological cycles in hotter climates. J. Clim. 16, 2419–2423 (2003).

    Article 

    Google Scholar
     

  • O’Gorman, P., Allan, R. P., Byrne, M. P. & Previdi, M. Energetic constraints on precipitation below local weather change. Surv. Geophys. 33, 585–608 (2012).

    Article 

    Google Scholar
     

  • Samset, B. H. et al. Quick and gradual precipitation responses to particular person local weather forcers: a PDRMIP multimodel examine. Geophys. Res. Lett. 43, 2782–2791 (2016).

    Article 

    Google Scholar
     

  • Jeevanjee, N. & Romps, D. M. Imply precipitation change from a deepening troposphere. Proc. Natl Acad. Sci. USA 115, 11465–11470 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fläschner, D., Mauritsen, T. & Stevens, B. Understanding the intermodel unfold in global-mean hydrological sensitivity. J. Clim. 29, 801–817 (2016).

    Article 

    Google Scholar
     

  • Vecchi, G. A. & Soden, B. J. World warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article 

    Google Scholar
     

  • Ma, J. et al. Responses of the tropical atmospheric circulation to local weather change and connection to the hydrological cycle. Annu. Rev. Earth Planet. Sci. 46, 549–580 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hodnebrog, Ø. et al. Water vapour changes and responses differ between local weather drivers. Atmos. Chem. Phys. 19, 12887–12899 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chou, C., Chen, C. A., Tan, P. H. & Chen, Ok. T. Mechanisms for world warming impacts on precipitation frequency and depth. J. Clim. 25, 3291–3306 (2012).

    Article 

    Google Scholar
     

  • Myhre, G. et al. Frequency of maximum precipitation will increase extensively with occasion rareness below world warming. Sci. Rep. 9, 16063 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Barsugli, J. J. & Sardeshmukh, P. D. World atmospheric sensitivity to tropical SST anomalies all through the Indo-Pacific basin. J. Clim. 15, 3427–3442 (2002).

    Article 

    Google Scholar
     

  • Palmer, T. N. & Mansfield, D. A. Response of two atmospheric common circulation fashions to sea-surface temperature anomalies within the tropical East and West Pacific. Nature 310, 483–485 (1984).

    Article 

    Google Scholar
     

  • Bony, S. et al. Sturdy direct impact of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Xie, S.-P. et al. World warming sample formation: sea floor temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article 

    Google Scholar
     

  • Zhou, C., Lu, J., Hu, Y. & Zelinka, M. D. Responses of the Hadley circulation to regional sea floor temperature modifications. J. Clim. 33, 429–441 (2020).

    Article 

    Google Scholar
     

  • Ma, J. & Xie, S.-P. Regional patterns of sea floor temperature change: a supply of uncertainty in future projections of precipitation and atmospheric circulation. J. Clim. 26, 2482–2501 (2013).

    Article 

    Google Scholar
     

  • Sillmann, J. et al. Excessive moist and dry circumstances affected in a different way by greenhouse gases and aerosols. npj Clim. Atmos. Sci. 2, 24 (2019).

    Article 

    Google Scholar
     

  • Allan, R. P. et al. Advances in understanding massive‐scale responses of the water cycle to local weather change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).

    Article 

    Google Scholar
     

  • Kvalevåg, M. M., Samset, B. H. & Myhre, G. Hydrological sensitivity to greenhouse gases and aerosols in a worldwide local weather mannequin. Geophys. Res. Lett. 40, 1432–1438 (2013).

    Article 

    Google Scholar
     

  • Trenberth, Ok. E., Fasullo, J. T. & Kiehl, J. Earth’s world power price range. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

    Article 

    Google Scholar
     

  • Zhou, C., Zelinka, M. D. & Klein, S. A. Influence of decadal cloud variations on the Earth’s power price range. Nat. Geosci. 9, 871–874 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ceppi, P. & Gregory, J. M. Relationship of tropospheric stability to local weather sensitivity and Earth’s noticed radiation price range. Proc. Natl Acad. Sci. USA 114, 13126–13131 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y., Proistosescu, C., Armour, Ok. C. & Battisti, D. S. Attributing historic and future evolution of radiative feedbacks to regional warming patterns utilizing a Inexperienced’s perform strategy: the preeminence of the Western Pacific. J. Clim. 32, 5471–5491 (2019).

    Article 

    Google Scholar
     

  • Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and suggestions on evolving patterns of floor temperature change in local weather fashions. J. Clim. 28, 1630–1648 (2015).

    Article 

    Google Scholar
     

  • Xie, S.-P., Kosaka, Y. & Okumura, Y. M. Distinct power budgets for anthropogenic and pure modifications throughout world warming hiatus. Nat. Geosci. 9, 29–33 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S., Stier, P. & Watson-Parris, D. On the contribution of quick and gradual responses to precipitation modifications attributable to aerosol perturbations. Atmos. Chem. Phys. 21, 10179–10197 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Watanabe, M. et al. Contribution of pure decadal variability to world warming acceleration and hiatus. Nat. Clim. Chang. 4, 893–897 (2014).

    Article 

    Google Scholar
     

  • Kosaka, Y. & Xie, S. P. Latest global-warming hiatus tied to equatorial Pacific floor cooling. Nature 501, 403–407 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Better dedicated warming after accounting for the sample impact. Nat. Clim. Chang. 11, 132–136 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Neale, R. B. et al. Description of the NCAR Group Ambiance Mannequin (CAM 5.0). NCAR Technical Notes. (NCAR, 2012).

  • Zhou, C., Zelinka, M. D. & Klein, S. A. Analyzing the dependence of worldwide cloud suggestions on the spatial sample of sea floor temperature change with a Inexperienced’s perform strategy. J. Adv. Mannequin. Earth Syst. 9, 2174–2189 (2017).

    Article 

    Google Scholar
     

  • Thorpe, L. & Andrews, T. The bodily drivers of historic and twenty first century world precipitation modifications. Environ. Res. Lett. 9, 064024 (2014).

    Article 

    Google Scholar
     

  • Pendergrass, A. G. The worldwide‐imply precipitation response to CO2‐induced warming in CMIP6 fashions. Geophys. Res. Lett. 47, e2020GL089964 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Trenberth, Ok. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The altering character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article 

    Google Scholar
     

  • O’Gorman, P. A. & Muller, C. J. How carefully do modifications in floor and column water vapor observe Clausius–Clapeyron scaling in local weather change simulations? Environ. Res. Lett. 5, 025207 (2010).

    Article 

    Google Scholar
     

  • Ming, Y., Ramaswamy, V. & Persad, G. Two opposing results of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett. 37, 1–4 (2010).

    Article 

    Google Scholar
     

  • Again, L. E. & Bretherton, C. S. Geographic variability within the export of moist static power and vertical movement profiles within the tropical Pacific. Geophys. Res. Lett. 33, L17810 (2006).

  • Williams, A. I. L., Stier, P., Dagan, G. & Watson-Parris, D. Sturdy management of efficient radiative forcing by the spatial sample of absorbing aerosol. Nat. Clim. Chang. 12, 735–742 (2022).

    Article 

    Google Scholar
     

  • Dagan, G. & Stier, P. Constraint on precipitation response to local weather change by mixture of atmospheric power and water budgets. npj Clim. Atmos. Sci. 3, 34 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Voigt, A. et al. Clouds, radiation, and atmospheric circulation within the current‐day local weather and below local weather change. WIREs Clim. Chang. 12, 1–22 (2021).

    Article 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Mannequin Intercomparison Challenge Section 6 (CMIP6) experimental design and group. Geosci. Mannequin Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar
     

  • Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, Ok. E. Forcing, feedbacks and local weather sensitivity in CMIP5 coupled ambiance–ocean local weather fashions. Geophys. Res. Lett. 39, 1–7 (2012).

    Article 

    Google Scholar
     

  • Watanabe, M., Kamae, Y., Shiogama, H., DeAngelis, A. M. & Suzuki, Ok. Low clouds hyperlink equilibrium local weather sensitivity to hydrological sensitivity. Nat. Clim. Chang. 8, 901–906 (2018).

    Article 
    CAS 

    Google Scholar
     

  • He, J., Soden, B. J. & Kirtman, B. The robustness of the atmospheric circulation and precipitation response to future anthropogenic floor warming. Geophys. Res. Lett. 41, 2614–2622 (2014).

    Article 

    Google Scholar
     

  • Liu, C., Allan, R. P. & Huffman, G. J. Co-variation of temperature and precipitation in CMIP5 fashions and satellite tv for pc observations. Geophys. Res. Lett. 39, L13803 (2012).

  • Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and world noticed temperature modifications: a brand new knowledge set from 1850. J. Geophys. Res. 111, D12106 (2006).

    Article 

    Google Scholar
     

  • Morice, C. P. et al. An up to date evaluation of close to‐floor temperature change from 1850: the HadCRUT5 knowledge set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).

    Article 

    Google Scholar
     

  • Lu, J., Chen, G. & Frierson, D. M. W. Response of the zonal imply atmospheric circulation to El Niño versus world warming. J. Clim. 21, 5835–5851 (2008).

    Article 

    Google Scholar
     

  • Rollings, M. & Merlis, T. M. The noticed relationship between Pacific SST variability and Hadley cell extent traits in reanalyses. J. Clim. 34, 2511–2527 (2021).

    Article 

    Google Scholar
     

  • Allan, R. P., Willett, Ok. M., John, V. O. & Trent, T. World modifications in water vapor 1979–2020. J. Geophys. Res. Atmos. 127, 1–23 (2022).

    Article 

    Google Scholar
     

  • Frieler, Ok., Meinshausen, M., Schneider Von Deimling, T., Andrews, T. & Forster, P. Adjustments in global-mean precipitation in response to warming, greenhouse fuel forcing and black carbon. Geophys. Res. Lett. 38, 1–5 (2011).

    Article 

    Google Scholar
     

  • Dai, A. Precipitation traits in eighteen coupled local weather fashions. J. Clim. 19, 4605–4630 (2006).

    Article 

    Google Scholar
     

  • Ma, S. & Zhou, T. Sturdy strengthening and westward shift of the tropical Pacific Walker circulation throughout 1979–2012: a comparability of seven units of reanalysis knowledge and 26 CMIP5 fashions. J. Clim. 29, 3097–3118 (2016).

    Article 

    Google Scholar
     

  • Gregory, J. M. & Andrews, T. Variation in local weather sensitivity and suggestions parameters in the course of the historic interval. Geophys. Res. Lett. 43, 3911–3920 (2016).

  • Armour, Ok. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Heede, U. Ok. & Fedorov, A. V. Japanese equatorial Pacific warming delayed by aerosols and thermostat response to CO2 enhance. Nat. Clim. Chang. 11, 696–703 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Seager, R. et al. Strengthening tropical Pacific zonal sea floor temperature gradient in keeping with rising greenhouse gases. Nat. Clim. Chang. 9, 517–522 (2019).

    Article 

    Google Scholar
     

  • Stephens, G. L. et al. Regional intensification of the tropical hydrological cycle throughout ENSO. Geophys. Res. Lett. 45, 4361–4370 (2018).

    Article 

    Google Scholar
     

  • Adler, R. F., Gu, G., Sapiano, M., Wang, J.-J. & Huffman, G. J. World precipitation: means, variations and traits in the course of the satellite tv for pc period (1979–2014). Surv. Geophys. 38, 679–699 (2017).

    Article 

    Google Scholar
     

  • Gimeno, L. et al. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50, RG4003 (2012).

    Article 

    Google Scholar
     

  • He, J. & Soden, B. J. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea floor temperature change. J. Clim. 28, 8728–8742 (2015).

  • Taylor, C. M. et al. Frequency of maximum Sahelian storms tripled since 1982 in satellite tv for pc observations. Nature 544, 475–478 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bala, G., Duffy, P. B. & Taylor, Ok. E. Influence of geoengineering schemes on the worldwide hydrological cycle. Proc. Natl Acad. Sci. USA 105, 7664–7669 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pendergrass, A. G. & Hartmann, D. L. World-mean precipitation and black carbon in AR4 simulations. Geophys. Res. Lett. 39, 1–6 (2012).

    Article 

    Google Scholar
     

  • Andrews, T., Forster, P. M. & Gregory, J. M. A floor power perspective on local weather change. J. Clim. 22, 2557–2570 (2009).

    Article 

    Google Scholar
     

  • Gregory, J. & Webb, M. Tropospheric adjustment induces a cloud element in CO2 forcing. J. Clim. 21, 58–71 (2008).

    Article 

    Google Scholar
     

  • Taylor, Ok. E., Stouffer, R. J. & Meehl, G. A. An outline of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar
     

  • Bellouin, N. et al. Bounding world aerosol radiative forcing of local weather change. Rev. Geophys. 58, 1–45 (2020).

    Article 

    Google Scholar
     

  • Ghan, S. et al. Challenges in constraining anthropogenic aerosol results on cloud radiative forcing utilizing present-day spatiotemporal variability. Proc. Natl Acad. Sci. USA 113, 5804–5811 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Allan, R. P. et al. Bodily constant responses of the worldwide atmospheric hydrological cycle in fashions and observations. Surv. Geophys. 35, 533–552 (2014).

    Article 

    Google Scholar
     

  • Myhre, G. et al. Wise warmth has considerably affected the worldwide hydrological cycle over the historic interval. Nat. Commun. 9, 1922 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and world temperature change. Geophys. Res. Lett. 37, n/a-n/a (2010).

    Article 

    Google Scholar
     

  • Gates, W. L. et al. An outline of the outcomes of the Atmospheric Mannequin Intercomparison Challenge (AMIP I). Bull. Am. Meteorol. Soc. 80, 29–55 (1999).

    Article 

    Google Scholar
     

  • Huang, B. et al. Prolonged Reconstructed Sea Floor Temperature, model 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 world reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Adler, R. F. et al. The version-2 World Precipitation Climatology Challenge (GPCP) month-to-month precipitation evaluation (1979–current). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article 

    Google Scholar
     

  • Zhang, S., Stier, P., Dagan, G., Zhou, C. & Wang, M. Supporting knowledge for ‘Sea surface warming patterns drive hydrological sensitivity uncertainties’. Zenodo https://doi.org/10.5281/zenodo.7787504 (2023).



  • Supply hyperlink

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Trending

    Copyright © 2022 - NatureAndSystems - All Rights Reserved